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Abstract

In this thesis novel semi-automated and fully automated ear-based biomet-
ric authentication systems are proposed. Within the context of the semi-
automated system, a region of interest (ROI) that contains the entire ear shell
is manually speci�ed by a human operator. However, in the case of the fully
automated system the ROI is automatically detected using a suitable convo-
lutional neural network (CNN), followed by morphological post-processing.
The purpose of the CNN is to classify sub-images as either foreground (part
of the ear shell) or background (homogeneous skin, jewellery, or hair). In-
dependent of the ROI-detection procedure, each grey-scale input image, in
its entirety, is subjected to Gaussian smoothing, followed by edge detection
through an appropriate Canny-�lter, and morphological edge dilation. The
detected ROI serves as a mask for retaining only those edges associated with
prominent contours of the ear shell. Features are subsequently extracted
from each binary contour image using the discrete Radon transform (DRT).
The aforementioned features are normalised in such a way that they are
translation, rotation and scale invariant. A Euclidean distance measure is
employed for the purpose of feature matching. Ear-based authentication is
�nally achieved by constructing a ranking veri�er. Exhaustive experiments
are conducted on two large international datasets. It is assumed that only
one reference ear is available for each individual enrolled into the system. An
experimental protocol is adopted that appropriately partitions the respec-
tive datasets based on ears that belong to training, validation, ranking and
evaluation individuals. It is demonstrated that the pro�ciency of the novel
systems developed in this thesis compares favourably to those of existing
systems.
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Uittreksel

In hierdie tesis word nuwe semi- en vol-outomatiese oor-gebaseerde biome-
triese veri�ëringstelsels voorgestel. Binne die konteks van die semi-automatiese
stelsel word 'n fokusgebied (FG), wat die hele oorskulp bevat, deur 'n menslike
operateur gespesi�seer. In die geval van die vol-outomatiese stelsel word
bogenoemde FG egter outomaties deur 'n geskikte konvolusie-neuraalnetwerk
(KNN) gevind, gevolg deur morfologiese na-verwerking. Die doel van die
KNN is om sub-beelde as óf voorgrond (deel van die oorskulp) óf agter-
grond (homogene vel, juweliersware, óf hare) te klassi�seer. Onafhanklik van
die FG-herkenningsprosedure, word elke grysskaal-invoerbeeld in geheel aan
Guassiese vergladding onderwerp, gevolg deur randherkenning met behulp
van 'n geskikte Canny-�lter, en morfologiese randverdikking. Die herkende
FG dien as 'n masker wat slegs daardie randte wat met prominente kontoere
van die oorskulp geassosieer word, behou. Kenmerke word vervolgens vanuit
elke binêre kontoerbeeld met behulp van die diskrete Radon transform ont-
trek. Bogenoemde kenmerke word sodanig genormaliseer dat dit translasie-,
rotasie- en skaal-invariant is. 'n Euklidiese afstandsmaat word vir die doel
van kenmerkpassing aangewend. Oor-gebaseerde herkenning word laastens
bewerkstellig deur van 'n rangorde-veri�eerder gebruik te maak. Uitgebreide
eksperimente word op twee groot internasionale datastelle uitgevoer. Daar
word aanvaar dat slegs een verwysingsoor vir elke geregistreerde individu
beskikbaar is. 'n Eksperimentele protokol wat die onderskeie datastelle sinvol
op grond van afrigtings-, bekragtigings-, ordenings- en evalueringsindividue
verdeel, word gevolg. Daar word aangetoon dat die vaardigheid van die nuwe
stelsels wat in hierdie tesis ontwikkel is, goed met dié van bestaande stelsels
vergelyk.
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Chapter 1

Introduction

1.1 Background and motivation

In a modern society where digital social interaction is becoming increas-
ingly commonplace and where �nancial transactions are routinely conducted
through digital means, a reliable automated biometric system that is able to
establish or verify an individual's identity is of paramount importance. A
biometric system is in essence a pattern recognition system which uses a spe-
ci�c physiological or behavioural characteristic of a person for the purpose of
establishing or verifying an individual's identity by �rst extracting prominent
features from a questioned sample (image) and then comparing these features
against a stored feature set or trained statistical model. Traditional means
for personal authentication such as access cards, personal identi�cation num-
bers (PINs) or passwords, can be can be stolen, duplicated, lost or forgotten.
Due to the aforementioned limitations associated with traditional modes of
personal authentication, the development of biometric systems is proving
to be an e�cient solution in overcoming the aforementioned shortcomings.
Biometric systems are also inherently more reliable than most traditional
modes of personal authentication due to measurable biometric traits such as
universality, uniqueness, collectability and permanence.

A human ear constitutes a stable structure which does not change signi�-
cantly as a result of aging and may be regarded as one of the most distinctive
human biometric traits since it possesses all of the aforementioned attributes
of uniqueness, collectability, permanence and universality (Iannerelli, 1989).
The human ear furthermore constitutes a large, passive, and non-intrusively

1
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CHAPTER 1. INTRODUCTION 2

acquirable biometric trait, that remains relatively invariant despite changes
in facial expression, the wearing of eye glasses or the application of make-
up, and may therefore be considered more reliable than most other facial
features for the purpose of personal identi�cation and veri�cation (Chang
et al., 2003).

Mark Burge and Wilhelm Burger were responsible for the �rst attempt
at an automated ear-based biometric authentication system in 1996. They
employed a mathematical graph model for the purpose of automatically
extracting features from ear images in order to match certain curves and
edges (Burge & Burger, 1996). In 1999, Belé Moreno, Ángel Sanchez, and
José Vélez presented a study on a fully automated ear-based recognition sys-
tem which is based on various attributes, like localised feature points and
the morphology of the outer ear (Moreni et al., 1999). Numerous feature
extraction and matching algorithms for ear recognition have been proposed
by researchers ever since. A dichotomisation of these systems is presented in
Chapter 2.

The remainder of this chapter is structured as follows: An overview of the
scope and objectives of this study is presented in Section 1.2. This is followed
by a brief synopsis of the proposed system (see Section 1.3). The abbreviated
results are presented in Section 1.4, while the contributions of this study are
listed in Section 1.5. An outline of this thesis is given in Section 1.6.

1.2 Scope and objectives

The aim of this thesis is to develop a novel, fully automated and pro�cient
ear-based biometric authentication system. The scope of the thesis is limited
to situations where

(1) a single reference ear image is available for each client enrolled into the
system, and

(2) ear images that belong to other individuals than the client in question
- these individuals are partitioned into training, validation and ranking
individuals - are also available.

The ear images that belong to the training and validation individuals are
used to respectively train and validate an appropriate convolutional neural
network (CNN) for the purpose of discriminating between sub-images that
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CHAPTER 1. INTRODUCTION 3

contain contours typically associated with an ear and those that contain
background information. This facilitates the detection of appropriate ROIs
within the ear images associated with the ranking individuals, as well as
the ear images that constitute the questioned and reference samples associ-
ated with the claimed individual. Radon transform-based features extracted
from the detected prominent ear contours within the questioned sample are
matched to those of the reference sample for the claimed individual, as well
as to those associated with the ranking individuals. Authentication is ulti-
mately based on the relative rank of the resulting distance associated with the
reference sample for the claimed individual, when the aforementioned rank is
compared to the respective ranks of the resulting distances associated with
the ear images that belong to the ranking individuals.

The scope of the thesis is furthermore limited to situations where

(1) the two-dimensional plane in which each ear approximately resides is
more or less parallel to the two-dimensional plane in which the camera
lens approximately resides,

(2) the distance between the abovementioned planes is allowed to vary,

(3) each ear may be orientated (rotated) di�erently within the abovemen-
tioned plane, and

(4) each ear may be translated di�erently within the abovementioned plane.

The abovementioned delimitations imply that the head of an individual
is allowed to shift, tilt up or down, or move towards or away from the camera
lens, while ensuring that the other side of the head is restrained by, for exam-
ple, allowing it to rest against a solid vertical surface. The head is therefore
not allowed to tilt towards or away from the camera. Pronounced tilting of
the head towards or away from the camera inevitably leads to a deterioration
of the proposed system's ability to consistently detect prominent contours as-
sociated with the ear shell, due to occlusions, etc. The scope of this thesis is
further restricted to biometric authentication based on right ears. A speci�c
individual's left and right ears may di�er slightly.

Although the aim of this thesis is to develop a fully automated ear-based
biometric authentication system, the pro�ciency of a semi-automated system
in which a human operator manually selects the ROI for each questioned
ear, will also be investigated and reported on. The manually selected ROIs
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CHAPTER 1. INTRODUCTION 4

also serve as a ground truth for evaluating the automated CNN-based ROI
detection protocol. The pro�ciency of the fully automated end-to-end ear-
based biometric authentication system is �nally investigated and reported
on.

1.3 System design

The enrollment and authentication stages of the semi-automated and fully
automated (end-to-end) ear-based biometric authentication systems proposed
in this thesis are conceptualised in Figures 1.1 and 1.2.

1.3.1 Data

In this thesis experiments are conducted on two di�erent datasets, that is
(1) the Mathematical Analysis of Images (AMI) ear database and (2) the
Indian Institute of Technology (IIT) Delhi ear database. In the case of the
AMI ear database, each image is �rst converted from RGB to grey-scale,
while the images in the IIT Delhi ear database were originally captured in
grey-scale format. The resolutions of the grey-scale images associated with
the AMI and IIT Delhi ear databases are 702×492 pixels and 272×204 pixels,
respectively.

1.3.2 Image segmentation

A CNN-based approach is proposed to facilitate automatic ROI detection
within the context of ear-based biometric authentication. The proposed
CNN-based protocol, combined with appropriate morphological post-processing,
is pro�cient in detecting a suitable ROI that contains the prominent contours
associated with the ear shell. The automated ROI detection strategy pro-
posed in this thesis is conceptualised in Figure 1.3

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 5

Enrollment

Database
of

ear images

Image
processing

Contour detection
Manually selected/
automatic detected
ROI (masking)

Prominent contours
Feature extraction

and
feature normalisation

Database of
feature sets

Figure 1.1: Conceptualisation of the enrollment stage of the semi-automated
and fully automated ear-based biometric authentication systems proposed in
this thesis.
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Figure 1.2: Conceptualisation of the authentication stage of the semi-
automated and fully automated ear-based biometric authentication systems
proposed in this thesis.
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Figure 1.3: Conceptualisation of the proposed ROI detection protocol.

1.3.3 Preprocessing, contour detection and

post-processing

A protocol for detecting prominent contours associated with the shell of a
human ear is proposed. Appropriate preprocessing techniques are applied to
the ear image in order to correct non-uniform illumination, suppress noise
and enhance the contrast of the image. Prominent edges are detected through
a Canny edge detector after which appropriate morphological operations are
conducted in order to connect disconnected contours and remove small non-
connected contours, while ROI-based masking is employed in order to ensure
that contours associated with hair and jewellery are discarded.

1.3.4 Feature extraction and matching

A feature extraction strategy based on the calculation of the discrete Radon
transform (DRT) of the contour image associated with the shell of a human
ear is proposed. The extracted feature set is normalised in such a way that
it constitutes a translational, rotational and scale invariant representation of
the contours in question. After appropriate feature normalisation, template
matching is achieved by calculating the average Euclidean distance between
the corresponding feature vectors associated with the respective feature sets.
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1.3.5 Veri�cation

A rank-based veri�er is �nally employed in order to ascertain the authenticity
of a questioned ear image.

1.4 Abbreviated results

As previously mentioned, the pro�ciency of the ear-based authentication sys-
tems developed in this thesis is estimated by considering two datasets namely
the AMI and IIT ear databases. In this study three main algorithms are
developed within the context of ear-based biometric authentication. Exper-
iments are conducted to evaluate the pro�ciency of (1) the proposed au-
tomated ROI detection algorithm, as well as the respective pro�ciencies of
(2) the semi-automated and (3) the fully automated ear-based biometric au-
thentication systems developed in this thesis.

Within the context of the semi-automated ear-based biometric authenti-
cation system proposed in this thesis, two scenarios are investigated, that is
(1) a scenario in which a questioned ear is only accepted when it has a ranking
of one and (2) a scenario in which a questioned ear is accepted when it has
a ranking better than or equal to an optimal ranking (which may be greater
than one). For the �rst (rank-1) scenario, it is demonstrated that average er-
ror rates (AERs) of 2.4% and 6.59% are achievable within the context of the
AMI and IIT Delhi ear datasets, respectively. In the case of the second (opti-
mal ranking) scenario, it is however demonstrated that the above-mentioned
error rates may be reduced to 1.91% and 5.07%, respectively.

What the CNN-based automated ROI detection algorithm developed in
this thesis is concerned, it is demonstrated that 91% and 88% of the pixels
are correctly classi�ed as either ear pixels or background pixels within the
context of the AMI and IIT Delhi ear databases, respectively.

Within the context of the fully automated ear-based biometric authenti-
cation system proposed in this thesis, only the scenario in which a questioned
ear with a ranking of one is accepted, that is the rank-1 scenario, is investi-
gated. For this scenario, AERs of 12.5% and 23% are reported for the AMI
and IIT Delhi ear databases respectively. An improvement on these results
is however expected when other (optimal) rankings are also considered, but
this was not investigated in this thesis due to time constraints.
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1.5 Contributions

To the best of our knowledge, the semi-automated and fully automated sys-
tems developed in this thesis employ an ensemble of techniques within the
context of machine learning and template matching that has not been em-
ployed for ear-based biometric authentication on previous occasions, and may
therefore be considered novel. This work may also form the basis of an in-
vestigation into an end-to-end deep learning-based approach to ear-based
biometric authentication.

1.6 Thesis outline

The thesis is structured as follows:

Chapter 2: Literature study. A concise overview of existing research
within the context of ear-based biometric authentication is presented in ac-
cordance to the systems proposed in this thesis. In particular, existing re-
search on the automated segmentation of human ears and/or the detection
of a ROI that encloses the ear in question, is scrutinised. Furthermore, exist-
ing research on feature extraction protocols and feature matching approaches
within the context of ear-based recognition systems is laid out in this chap-
ter.

Chapter 3: Image segmentation. The proposed CNN-based algorithm
for the automatic detection of the ROI within the context of ear-based bio-
metric authentication is described. Amongst other things, the parameters
and data partitioning protocol utilised in the training of the CNN-based al-
gorithm and the post-processing approach are discussed.

Chapter 4: Contour detection. The image processing algorithms that
are utilised during the proposed contour detection protocol are discussed.
Amongst other things, the Canny edge detector employed for the purpose
of identifying prominent contours associated with the ear, followed by ap-
propriate post-processing operations which ensure that noise and short edge
segments are removed, are discussed in detail.

Chapter 5: Feature extraction, feature matching and veri�cation.
The proposed strategy that facilitates feature extraction from the contour
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CHAPTER 1. LITERATURE STUDY 9

image via the DRT is presented. An appropriate feature normalisation strat-
egy to ensure scale, translation and rotation invariant representations of the
original image is described. A feature matching protocol that is based on the
Euclidean distance measure is discussed. Finally, a veri�cation protocol that
is based on the construction of a ranking veri�er is introduced.

Chapter 6: Experiments. The datasets considered in this research and
an outline of the experimental protocol employed in this thesis are discussed.
This is followed by exhaustive experiments that gauge and analyse the pro�-
ciency of the algorithms proposed in this thesis. An overview of the software
developed and hardware utilised in this thesis is also presented.

Chapter 7: Conclusion and future work. The research conducted in
this thesis, as well as the experimental results are analysed and placed into
perspective, after which avenues for future research are explored.
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Chapter 2

Literature study

2.1 Introduction

As mentioned in the previous chapter numerous research studies on ear-based
biometric authentication/recognition systems have been proposed on previ-
ous occasions. The most prominent pioneering work within this context is
probably that by Iannarelli (Iannerelli, 1989). In this work the author exam-
ined 10000 ear images from which he extracted 12 geometric measurements
based on the crus of the helix of the ear and concluded that these measure-
ments are unique across individuals.

In this chapter a concise overview of relevant existing ear-based authenti-
cation systems is presented. The discussion provided on the aforementioned
systems is therefore in some way related to the work presented in this the-
sis. The systems are therefore categorised into (1) the algorithms proposed
for the automated segmentation of the ear or the detection of the region of
interest (ROI) (see Section 2.2), (2) the techniques proposed for the purpose
of extracting features from the ear (see Section 2.3) and (3) the proposed
feature matching and veri�cation paradigms for the purpose of ear-based
authentication (see Section 2.3).

Since most existing ear-based authentication systems have not been eval-
uated on the same datasets than those considered in this thesis, it is not
possible to directly compare the reported pro�ciency of these systems to
those proposed in this thesis. Fortunately, a few existing systems have in
fact been evaluated on the same datasets than those considered in this the-
sis which facilitates a more direct comparison in system pro�ciency in these

10
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cases. In Section 2.4 such a comparison is drawn within the context of the
semi-automated system developed in this thesis. It is important to note that
the experimental protocol (data partitioning) may di�er amongst the systems
being compared.

2.2 Automated ear segmentation

Automatic ear segmentation, that is the detection of the region of inter-
est (ROI), involves the localisation of the ear shell within each ear image. In
this chapter a concise overview of the work that has been conducted on auto-
mated ear segmentation is presented. An overview of existing ear detection
techniques is presented in Table 2.1, along with the employed databases and
the reported performance rates.

Abaza et al. (2010) proposed a modi�ed Adaboost algorithm based on
Haar features for automated real-time robust detection of the ear. An Ad-
aboost algorithm is a pattern detection or classi�cation strategy that com-
bines a set of weakly e�ective classi�ers to form a strong classi�er. The
proposed technique classi�es images based on the value of rectangular fea-
tures, operating on small sub-images. The input image is �rst rescaled and
then divided into overlapping sub-images of size 24×16 pixels. The cascaded
Adaboost algorithm is subsequently applied to each of the sub-images. The
proposed system was evaluated on the University of Manchester Institute of
Science and Technology (UMIST) database, the University of Notre Dame
(UND) database, the West Virginia High Technology Foundation (WVHTF)
database, the Facial Recognition Technology (FERET) database and the
University of Science and Technology Beijing (USTB)-III dataset. Detection
accuracies of 100%, 94.37% 93.86%, 84% and 93.75% are reported for the
respective datasets.

Kumar and Wu (2012) proposed an automated ear detection algorithm
based on basic image preprocessing techniques, morphological operations and
Fourier descriptors. The proposed strategy involves the smoothing of the im-
age with a Gaussian �lter for the purpose of suppressing the e�ect of noise
followed by histogram equalisation. Morphological operations (closing and
opening techniques) are simultaneously applied after histogram equalisation.
Otsu's threshold is employed on the preprocessed image to generate a bina-
rised mask image. The resulting binary mask is subsequently employed for
the purpose of ROI detection within the original grey-scale image, which is
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followed by morphological dilation of the grey-scale image. Morphological
opening operations are subsequently applied for the purpose of noise elim-
ination. Boundary tracing is �nally employed and the shape of the ear is
de�ned using Fourier descriptors. The proposed strategy was evaluated on
the Indian Institute of Technology (IIT) Delhi ear dataset. Results for the
proposed automated ear segmentation protocol are not available.

Vélez et al. (2013) presented a novel automated ear segmentation al-
gorithm based on the combined use of the circular Hough transform and
anthropometric ear proportions for the accurate detection of the ear region.
This technique involves image preprocessing and contour detection followed
by the localisation of the ear region. The input ear image is �rstly con-
verted from a RGB format to grey-scale format, after which a median �lter
is applied for noise removal. A Canny edge detector is employed for the
purpose of detecting prominent contours. Morphological dilation is applied
on the edge image using a disk-shaped structuring element of size 4×3 after
which small connected components are removed. The proposed detection of
the ear region is carried out by searching for circles through the application
of the circular Hough transform. First a search is conducted for the upper
helix region and once this region is detected, anthropometric ratios of the
ear are considered for the detection of the remainder of the ear. To test the
proposed ear detection technique the authors created three di�erent image
databases consisting of grey-scale, RGB and near infrared (NIR) images, re-
spectively. Detection accuracies of 87.88%, 78.33% and 64% are reported for
the respective datasets.

Yuan and Mu (2014) proposed an ear detection approach based on an
improved Adaboost algorithm and the active shape model (ASM). The pro-
posed technique detects the ear region under complex background conditions
through the application of two steps, that is o�ine cascaded classi�er train-
ing and online detection. For the improved Adaboost algorithm the authors
propose a segment selection algorithm to choose the optimum threshold of
weak classi�ers. They also propose a strategy to reduce the false acceptance
rate by changing the weight distribution of the weak classi�ers and a new
parameter is applied to improve the robustness of the detector and prevent
over�tting. A single ear-detection technique is proposed on the basis of the
asymmetry of the right and left ears. For the �nal segmentation of the ear
region an automatic ear normalisation strategy based on the ASM is applied.
The proposed techniques are evaluated on two datasets, that is the USTB-
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III and the UND ear datasets. Detection accuracies of 96.46% and 94% are
reported for the respective datasets.

Zhang and Mu (2017) proposed an automated ear detection technique
that involves multiple scale faster region-based convolutional neural networks
(Faster R-CNN) to detect ears from two dimensional pro�le images in uncon-
trolled conditions. The proposed technique involves the detection of three
regions of di�erent scales through the region proposal network (RPN) tech-
nique for the estimation of the location of the ear within the image. An
ear region �ltering technique is proposed to automatically eliminate false
positives and for the accurate detection of the ear region via a threshold
value method. The experiments for the proposed techniques were conducted
on the Collection J2 of the University of Notre Dame Biometrics Database
(UND-J2), and the University of Beira Interior Ear dataset (UBEAR). In ad-
dition to this they created their own dataset named WebEar which was also
used for the purpose of conducting the experiments. Detection accuracies
of 100%, 98.22%, and 98% are reported for the respective datasets.

Galdámez et al. (2017) proposed a CNN algorithm in conjunction with
di�erent object detectors based on the Viola-Jones framework for automated
detection of the ear region. The authors used the Haar cascade classi�er
to identify the face pro�les and proceeded to obtain the ear using the same
Haar technique. The image ray transform (IRT) is computed in scenarios
where the Haar technique fails to identify the ear. A Gaussian smoothing
�lter is applied in order to eliminate noise and remove gaps in the helix. The
resulting image is then thresholded to obtain the �nal helix. An elliptical
template is used to match the image. After the ROI is detected, preprocessing
operations are performed. A RGB image is converted into grey-scale format
and the image is normalised. Ear segmentation is performed by applying a
mask. The Canny edge detector is employed for the detection of prominent
contours within the detected ear region. The proposed system is evaluated
on the Ávila's Police School database and on the Bisite videos database.
Detection accuracies of 99.02% and 98.03% are reported for the respective
datasets.
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Publication Detection technique Dataset Accuracy (%)

Abaza et al., 2010 Modi�ed AdaBoost
UMIST, UND

WVHTF, FERET
and USTB-III

100, 94.37
93.86, 84
and 93.75

Kumar & Wu, 2012
Local orientation and

local gray level phase information
IIT Delhi N/A

Vélez et al., 2013 Modi�ed AdaBoost
RGB, grey-scale
and NIR images

87.88, 78.33
and 64

Yuan& Mu, 2014 Improved AdaBoost USTB-III and UND 96.46 and 94

Zhang & Mu, 2017
Multiple scale faster

R-CNN deep learning model
WebEar, UND-J2
and UBEAR

98, 100
and 98.22

Galdámez et al., 2017
CNN techniques combined with
Viola-Jones framework and IRT

Ávila's Police School
and the Bisite

99.02 and 98.03

Table 2.1: A summary of existing two dimensional ear detection techniques,
the databases employed and the reported detection accuracies. The CNN-
based ROI-detection algorithm proposed in this thesis achieves detection ac-
curacies of 91% and 88% when evaluated on the AMI and IIT Delhi ear
datasets.

2.3 Feature extraction and matching

In this section a brief overview is presented of existing techniques that have
been proposed for the extraction of a set of measurable features from ear
images within the context of ear-based biometric authentication systems.
A concise overview of the relevant template matching techniques proposed
within the context of ear-based biometric authentication systems is provided
and their respective performances are presented.

Choras (2008) proposed four novel techniques for feature extraction from
two dimensional images based on geometrical strategies. The author ex-
tracted geometrical features from normalised contour images. The author
furthermore proposed a feature extraction technique based on concentric cir-
cles centred at the centroid of the ear image. A contour tracing strategy
based on extracting characteristic intersection points of the circles and the
ear contours are used as feature points. An angle based contour representa-
tive technique is employed in which the angles between the centre point and
the concentric circle intersecting points are employed for feature representa-
tion. A triangle ratio method determines the normalized distances between
reference points and uses these distances for ear description. The author
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conducted studies on di�erent databases and reports recognition rates be-
tween 86.2% and 100% for a database of 240 ear images (which includes 20
di�erent views) from 12 subjects, and false rejection rates between 0% - 9.6%
for a large databases of 102 ear images.

Tharwat et al. (2012) proposed the principal component analysis (PCA)
algorithm for the purpose of extracting features from ear images. The authors
propose four feature extraction techniques based on the PCA algorithm. In
the �rst approach the whole image is used, while in the second, third and
fourth approaches the ear image is �rst divided into non-overlapping sub-
images. The images are centred by calculating the mean of each image. A
covariance matrix is then constructed by calculating the eigenvalues and cor-
responding eigenvectors. For the second, third and fourth strategies the ear
image is �rst divided into non-overlapping sub-images of four, nine and 16
blocks of size 64×64 pixels respectively. The PCA features are extracted
from each sub-image. A minimum distance classi�er is employed for template
matching. The respective outputs of the classi�ers are then combined on the
abstract, score and rank levels. The cosine, Euclidean and city block dis-
tances are considered. The author conducted experiments on 102 grey-scale
ear images (6 images per individual) and reports recognition rates within a
range of 64.70% and 97.06%.

Shu-zhong (2013) proposed an improved normalisation technique for fea-
ture extraction based on a geometrical algorithm. The author proposes an
angle normalisation strategy by employing geometrical parameters to ensure
a translational, rotational and scale invariant representation of contour im-
ages. The proposed strategy is based on the extraction of an external ear
shape feature. The author de�nes the connection of the highest and the low-
est point on the outer ear contour as the long axis. The author then de�nes
the long axis and the centre of mass as geometrical parameters for a feature
vector representation and subsequently performs the angle normalisation by
considering the geometrical parameters.

Yuan and Mu (2014) employed the Gabor �lter for feature extraction and
the kernel Fisher discriminant analysis (KFDA) for dimension reduction. The
Gabor �lter is applied on the ear images to extract spatially localised features
of di�erent directions and scales. Gabor-based feature extraction is imple-
mented by convolving the ear image with the Gabor kernel function. Since
the Gabor features are high dimensional, the full space KFDA algorithm is
applied for feature reduction. A distance-based classi�er is applied for clas-
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si�cation purposes. The proposed approach was evaluated on the USTB and
the UND ear datasets. The radial basis function (RBF) kernel was employed
for classi�cation purposes within the context of a rank-1 scenario. Recogni-
tion rates of 96.46% and 94% are reported for the USTB and the UND ear
datasets respectively.

A novel feature extraction technique based on the fusion of the shape
of the ear and the tragus was proposed by Annapurani et al. (2015). The
authors extracted the shape of the ear by �rst performing preprocessing tech-
niques, after which the preprocessed image is binarised. The connected com-
ponents are calculated and the largest blob is classi�ed as the ROI. The
boundary of the blob is marked and the shape of the ear to be extracted
is given by the maximum length of the marked boundary. The tragus is
extracted by drawing a line connecting the maximum and the minimum co-
ordinates. The centre region of the aforementioned line de�nes the tragus
of the ear. The shape of the ear and the extracted tragus are fused to form
a feature template. The Hamming distance and the Euclidean distance are
employed for template matching. More speci�cally, the queried feature is
compared to the enrolled feature of the claimed identity using the Ham-
ming and Euclidean distances. Experiments are conducted on two datasets
namely the AMI and IIT Delhi ear datasets. Within the context of the AMI
ear dataset, accuracies of 99.97% and 100% are reported the Hamming and
Euclidean distances respectively. For the IIT Delhi ear dataset an accuracy
of 100% was reported for both the Hamming and Euclidean distances.

Rahman et al. (2016) employed the scale invariant feature transform
(SIFT) algorithm for feature extraction and feature matching purposes. Fea-
tures from the ear image are extracted using the SIFT algorithm (key-point
location). Template matching or classi�cation is done using a minimum dis-
tance classi�er. The proposed system is evaluated on two datasets that is
the IIT Delhi ear database and the AMI ear database, and recognition rates
of 95.2% and 100% respectively are reported.

Omara et al. (2016a) proposed a novel feature extraction strategy based
on the polar sine transform (PST). Preprocessing operations are applied to
the input ear images followed by ear normalisation. The preprocessed images
are then divided into overlapping circular sub-images of size 16×16 pixels
with a step size of 2 pixels. The PST coe�cients are computed to extract
invariant features for each sub-image. The extracted features are then ac-
cumulated to form a single feature vector to represent the ear image. The
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authors employed a support vector machine (SVM) for classi�cation pur-
poses. The proposed approach was evaluated on the USTB-III database and
a recognition rate of 96.67% is reported.

A novel geometrical feature extraction strategy was proposed by Omara
et al. (2016b). This strategy involves image preprocessing using a Gaussian
�lter for eliminating noise e�ects in the images, which is followed by the
detection of prominent contours via the Canny edge detector. Geometrical
features are extracted from the contour image for the purpose of describing
the outer helix. The proposed geometrical feature extraction technique in-
volves two steps: (i) the location of the upper right, upper left, and lower left
segments of the outer helix, and (ii) the detection of the minimum ear height
line (EHL) and the extraction of the shape features. The dissimilarity of two
ear images is measured by the Euclidean distance. The proposed approach
is evaluated on the USTB-I and the IIT Delhi ear databases. Recognition
rates of 98.33% and 99.60% were reported for the respective datasets.

2.4 Comparison with existing systems

In order to place the performance of the systems proposed in this thesis into
perspective, the reported pro�ciency of the aforementioned systems are com-
pared to those of existing state-of-the-art ear-based biometric authentication
systems. This comparison is drawn within the context of the semi-automated
system developed in this thesis. In Table 2.2 a brief summary of existing fea-
ture extraction and template matching techniques is presented along with
the reported performance rates for the AMI and IIT Delhi ear datasets.
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Accuracies

Publication Feature extraction technique Feature matching technique AMI (%) IIT Delhi (%)

Our approach Discrete Radon transform Euclidean distance 98.92 94.06

Annapurani et al., 2015
Fusion of the

shape of the ear
and the tragus

Hamming distance
and

Euclidean distance
99.97 and 100 100

Recognition rates

Publication Feature extraction technique Feature matching technique AMI (%) IIT Delhi (%)

Rahman et al., 2016 SIFT A minimum distance classi�er 100 95.20

Omara et al., 2016
Geometrical features of
the shape of the ear

Euclidean distance · · · 99.6

Table 2.2: A summary of existing feature extraction and feature matching
techniques, and the reported performance rates within the context of the
AMI and IIT Delhi ear databases.
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Chapter 3

Image segmentation

3.1 Introduction

In this thesis novel semi-automated and fully automated ear-based biometric
authentication systems are proposed. In the case of the semi-automated sys-
tem a suitable region of interest (ROI), that contains the entire ear shell, is
manually speci�ed (selected). However, as part of the fully automated sys-
tem, a suitable ROI has to be automatically detected. A convolutional neural
network (CNN), followed by appropriate morphological post-processing, is
proposed for this purpose.

Each ear image (see Figure 3.1 (a)) is partitioned into a number of overlap-
ping sub-images (patches) by employing a sliding window (see Figure 3.1 (b)).
The objective of the CNN is to classify each patch within a test image as
either foreground or background. Foreground patches contain contours typ-
ically associated with the shell of a human ear, while background patches
typically contain hair, jewellery and homogeneous skin. Ear images that are
associated with so-called training and validation individuals are employed for
the respective purposes of training the CNN (for ROI detection) and avoiding
over-�tting.

It is important to note that ear images from di�erent individuals are
used for training, validation, ranking and evaluation purposes. The so-called
ranking individuals are employed for the purpose of constructing a ranking
veri�er. Radon transform-based features extracted from a questioned ROI
(within the evaluation set) is matched to the corresponding features extracted
from a reference ROI (known to belong to the claimed individual), as well as

19
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Figure 3.1: (a) An example of a RGB ear image of size 702×492 pixels.
(b) A grey-scale version of the image depicted in (a) after being partitioned
into 126 overlapping 82×82 sub-images (patches).

to the corresponding features extracted from ROIs belonging to the ranking
individuals (known not to belong to the claimed individual). The resulting
distances are ranked from small to large, after which the rank associated
with the claimed individual is used to determine the questioned sample's
authenticity.

The patches associated with the training and validation individuals are
therefore manually annotated (labelled) and used to train and validate the
CNN. The CNN is subsequently used to classify the (unseen) patches asso-
ciated with the ranking and evaluation individuals.

This is followed by morphological post-processing for the purpose of en-
suring that each detected ROI constitutes a fully-connected convex set of
pixels that contains the entire ear shell. In order to quantify the pro�ciency
of the proposed ROI-detection protocol, the amount of overlap between the
manually speci�ed (selected) ROIs and the automatically detected ROIs is es-
timated (and reported on) for the ranking and evaluation individuals. Within
the context of ROI-detection, the ranking and evaluation sets may therefore
be jointly referred to as the test set.

In this chapter a brief overview of the important concepts and algo-
rithms associated with machine learning (in general) is �rst provided (see
Section 3.2). This is followed by a general introduction to neural networks
(see Section 3.3), after which the architecture and training of a typical CNN
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is discussed (see Section 3.4). Finally, in Section 3.5, the proposed ROI de-
tection protocol within the context of ear-based biometric authentication is
described in more detail, followed by an analysis of the results.

3.2 Machine learning

The main purpose of machine learning is to enable computers to learn and
perform tasks with limited or no human intervention. A machine learning
algorithm is simply de�ned as an algorithm that is able to learn from exam-
ples (observed or training data) without being explicitly programmed how to
do so (Bishop, 2006). The algorithm enables the construction of a model that
identi�es certain patterns and structure in observed (training) data so as to
predict the output for unseen (test) data. The basic protocol of a machine
learning algorithm is therefore to receive and analyse input data in such a
way that it is able to predict the output values within an acceptable range.
As new data is fed into the system, the algorithm learns and optimises the
model parameters in order to improve system performance.

Depending on which data is available, machine learning algorithms may
be classi�ed into one of the following paradigms: (1) supervised learning, (2) un-
supervised learning, (3) semi-supervised learning and (4) reinforcement learn-
ing (Kotsiantis et al., 2007; Abraham & Sathya, 2013).

The underlying principle of supervised learning for predictive modelling is
that the model learns to predict the output variables (y) from the input vari-
ables (x) using labelled data. Supervised learning algorithms may be further
subcategorised into (1) regression and (2) classi�cation models. Regression
models predict continuous variables that link input-output pairs (Neter et
al., 1996), while classi�cation models assign the output variable to one of
several discrete classes (Ren & Malik, 2003).

In an unsupervised learning scenario the algorithm �nds structure from
unlabelled training data by means of grouping the data into clusters or by
arranging it in a more structured way. Semi-supervised learning constitutes
a combination of supervised and unsupervised learning in which the algo-
rithm considers partially labelled data. In the case of reinforcement learning
the algorithms are goal-oriented and learn what actions to take in certain
situations based on rewards and penalties.

One of the key problems being addressed in this chapter, that is the
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labelling of patches within an input ear image as either foreground or back-
ground, therefore constitutes a classi�cation problem within the context of
the supervised learning paradigm.

3.3 Neural networks and deep learning

Machine learning through a neural network, which contains a large number of
hidden layers, is often referred to as deep learning (Glorot & Bengio, 2010).
The concept of a hidden layer is discussed later in this section.

The basic building block of a neural network is a neuron (perceptron) as
depicted in Figure 3.2. Each input value xi is �rst multiplied with a corre-
sponding weight wi. The input-weight products are subsequently summed,
after which a bias b is added to the weighted sum. A non-linear activation
function f is �nally applied to the resulting value in order to obtain the
output y. This process can be mathematically formulated as follows,

y = f
(
b+

∑
xiwi). (3.1)

The neuron (perceptron) depicted in Figure 3.2 may for example be em-
ployed for the purpose of reaching a decision d as follows,

d =

{
1, if y ≥ 0
0, if y < 0.

(3.2)

A typical neural network contains a number of interconnected neurons (per-
ceptrons) and consists of an input layer, an arbitrary number of hidden layers,
an output layer, as well as a weight matrix W and a bias vector b. Each
layer consists of a number of nodes, where each node (except for the input
nodes) is associated with a neuron. When only two layers (that is an input
layer and an output layer) are present, the network is referred to as a single
layer perceptron (SLP). A SLP therefore contains no hidden layers, of which
the simple "network" depicted in Figure 3.2 is an example. A network that
contains at least three layers (that is a network with one or more hidden
layers) is referred to as a multilayer perceptron (MLP). An example of an
MLP that contains two hidden layers is presented in Figure 3.3.

In Figure 3.3 each node within a hidden layer (coloured blue), as well as
the output node (coloured red) is able to receive, process and propagate data
in the same way as is the case for the single neuron (perceptron) depicted
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Figure 3.2: A neuron (perceptron) with three inputs values, x1, x2 and x3.

in Figure 3.2. The output of one node therefore serves as input for the
next. It is important to note that, during any given training iteration, the
weight associated with propagating from node i to node j, that is wij, is
the same irrespective of the layers involved. Furthermore, during a given
training iteration, the bias associated with a speci�c node i, that is bi, is the
same across all the layers. Although a di�erent activation function fi may
be associated with each node i, the function is kept �xed during training.

x1

x2

x3

x4

Hidden
layer 1

Hidden
layer 2

yyyy

w11

w45

Input
layer

Output
layer

Figure 3.3: An example of a fully-connected neural network (MLP) with two
hidden layers.

The main purpose of an activation function is to enable the network to
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learn more complex patterns by introducing non-linearity. Such an activa-
tion function does however have to be di�erentiable in order to facilitate
back-propagation for optimisation purposes during training. The most pop-
ular activation functions include the logistic sigmoid function (f(x) = 1

1+e−x
)

(see Figure 3.4 (a)) which maps the input to the interval [0,1], as well as
the hyperbolic tangent (tanh) function (tanh(x) = 2

1+e−2x − 1) (see Fig-
ure 3.4 (b)) which maps the input to the interval [-1,1]. The tanh func-
tion may be expressed as a scaled version of the sigmoid function as follows
tanh(x) = 2f(2x) − 1. Both of these functions do however tend to saturate
during training. This, in turn, leads to the exploding/vanishing gradient
problem, which may fortunately be mitigated by introducing the so-called
ReLU function. The ReLU function is discussed in more detail within the
context of CNNs in Section 3.4.2.
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Figure 3.4: Popular activation functions. (a) The logistic sigmoid function.
(b) The hyperbolic tangent (tanh) function.

During the training phase the input values are passed through the net-
work, after which the predicted (network) output is compared to the target
(desired) output. The di�erence between the predicted and target output
may be quanti�ed by an error (loss) function. This error is used to modify
(update) the network parameters (that is the weights and biases) in such a
way that the error gradually decreases over a number of training iterations
through a back-propagation algorithm that (for example) employs stochastic
gradient descent (SGD).

A SLP can only classify linearly separable functions, while a MLP is
capable of also classifying non-linearly separable functions. MLPs are often
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referred to as deep feed-forward networks and form an important underlying
component of CNNs. Deep feed-forward networks constitute directed acyclic
graphs which implies that these models allow information to �ow in one
direction only, that is from the input layer through the hidden layers and
�nally to the output layer without any feedback connections or loops.

3.4 Convolutional neural networks

Convolutional neural networks (CNNs) are often simply referred to as con-
volutional networks. These networks represent a specialised class of neural
networks that employs convolutional layers for the purpose of extracting
pertinent information. Output in the form of a feature map is obtained by
convolving the input data with a convolutional kernel (�lter). The �lters in
the convolutional layers are automatically adjusted (updated) during train-
ing based on learned parameters in order to extract optimal features for the
speci�c task at hand. In this section the architecture and training of a typical
CNN are introduced within the context of handwritten digit recognition (see
Figure 3.5). A discussion of the CNN employed in this thesis for the speci�c
purpose of detecting a suitable ROI for ear-based biometric authentication
(and its hyperparameters) is reserved for Section 3.5.

3.4.1 Architecture

A typical CNN consists of an input layer, one or more convolutional layers, a
number of fully-connected (FC) layers (akin to the hidden layers discussed in
the previous section), as well as a suitable classi�er (which may for example
be based on a softmax function). Additional specialised layers, like ReLU,
pooling and dropout layers are often included to accelerate convergence and
avoid over�tting.

The input layer contains the raw input data, that is the individual pixel
values, as well as the width, height, and depth (number of channels) associ-
ated with the image that is to be processed by the network in question.
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Figure 3.5: Architecture of a typical CNN suitable for handwritten digit
recognition. The two convolutional layers are associated with 6 and 16 dif-
ferent kernels (�lters) respectively. Each kernel has a size of 5 × 5 pixels,
while a convolutional stride of s = 1 pixel is employed. The pooling layers
consider 2 × 2 sub-images and employ a stride of s = 2 pixels. Three FC
layers are present. This �gure was redrawn from (LeCun et al., 1998).

Convolutional layer

Within the context of linear spatial �ltering the concepts of convolution and
correlation, which entail the process of sliding a kernel (�lter) across an
image, are closely related (Gonzalez & Wood, 2010). What is referred to
as a convolution operation in most machine learning applications is often
in actual fact a correlation operation. When the kernel (�lter) is located
on a speci�c part of an input image�this part of the image is referred to as
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the receptive �eld (RF)�the �lter coe�cients (weights) are multiplied with
the corresponding pixel values. The sum of these products is subsequently
assigned to the entry in the convolved output image that coincides with
the centre of the RF (Goodfellow et al., 2016). The convolution process
is conceptualised in Figure 3.6. More than one kernel (�lter) is typically
associated with each convolutional layer. The convolved output image for a
speci�c kernel (�lter) constitutes a speci�c channel within a multi-channel
stack, referred to as an activation map (feature map).

Receptive �eld

Convolved output image

Kernel/�lter

Input image

Figure 3.6: Conceptualisation of the convolution process within the context
of a single-channel input image.

A multi-channel input image (for example an RGB image), or an activa-
tion map that has been processed by an operation like pooling, often serves
as input to subsequent convolutional layers and is commonly referred to as
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the "input volume". A kernel (�lter) that is convolved with such an input
volume therefore typically constitutes a three-dimensional array with a depth
equal to that of the input volume.

Networks intuitively learn �lters that activate when they encounter cer-
tain types of features (located at speci�c spatial positions) in the input data.
Within the context of a convolutional layer, each node is only connected to
a local region within the input volume (that is the RF of the node). In this
way a FC layer is essentially rendered locally-connected as conceptualised in
Figure 3.7. This greatly reduces the number of parameters that has to be
trained for each convolutional layer. The introduction of convolutional lay-
ers further reduces the parameter count by employing a technique referred
to as parameter sharing as conceptualised in Figure 3.8. The aforementioned
technique enables nodes connected to di�erent local regions to have the same
weight and ensures translational invariance.

Three main hyper-parameters determine the size and spatial arrangement
of the output volume (feature map), namely the output depth, the stride and
zero-padding.

• The output depth corresponds to the number of convolutional �lters
being employed, while the set of neurons that focuses at the same region
within the input volume is referred to as the depth column.

• The stride refers to the number of pixels by which the centre of the
kernel (�lter) is adjusted after its application, while moving across the
input volume as part of the convolution process. This reduces the
spatial resolution, enables more e�cient processing and contributes to-
wards local translational invariance.

• Zero-padding involves the concatenation of zero-valued entries to the
border of the input volume so as to ensure that the size of the input
and output volumes remains similar.
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Locally-connected

Figure 3.7: Conceptualisation of rendering a FC layer locally-connected. This
�gure was redrawn from (Lee, 2008).

Weight
sharing

y =
∑

(i,j)∈RF

xijwij + b

Locally-connected

Y=X ∗W+ b I

Convolutional

Figure 3.8: Conceptualisation of weight sharing, where the ∗−operator de-
notes convolution. This �gure was redrawn from (Lee, 2008).

ReLU layer

Each convolutional layer is typically followed by a recti�ed linear unit (ReLU)
layer. A ReLU layer applies an element-wise activation function to the feature
map by setting all of the negative pixel values in the feature map equal to
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zero, that is f(x) = max(0, x) or

f(x) =

{
x, if x ≥ 0
0, if x < 0.

(3.3)

The main purpose of the ReLU function (as depicted in Figure 3.9) is to
introduce non-linearity to the input, therefore enabling neurons to learn non-
linear representations. It is advantageous to incorporate ReLU layers into a
CNN, since it reduces the training time by accelerating the convergence of
the SGD algorithm (Krizhevsky et al., 2012). Since the ReLU function is not
di�erentiable at the singular point x = 0, sub-derivatives facilitate the back-
propagation algorithm (Simonyan et al., 2013; Goodfellow et al., 2016). The
ReLU function has also been shown to perform better than other activation
functions, like the logistic sigmoid and hyperbolic tangent functions, since it
is less prone to saturation during training and mitigates the exploding/van-
ishing gradient problem (Krizhevsky et al., 2012).
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Figure 3.9: The ReLU function.

Pooling layer

Each ReLU layer is typically followed by a pooling layer. Spatial pooling,
also referred to as sub-sampling, facilitates the reduction of the dimension-
ality (that is the height and width, but not the depth) of an input volume
(feature map). Since images often have a so-called stationary property, which
implies that prominent features within a certain sub-image are also likely to
be relevant for other sub-images, large images may be adequately described
by aggregate statistics for various non-overlapping sub-images. This process
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(referred to as pooling) is often achieved by simply computing the mean
or maximum value of each sub-image, which is subsequently assigned (at
the corresponding spatial position) to a sub-sampled version. In scenarios
where 2 × 2 sub-images are considered, the height and width of the sub-
sampled version will be half that of the original image (see Figure 3.10).
A pooling layer therefore reduces the spatial resolution, the number of re-
quired parameters, computational complexity and over�tting (Goodfellow et
al., 2016). It is important to note that pooling is applied to each channel of
the recti�ed activation map independently.

5 7 3 2

1

4

4 9 4 7

56 8

362

79

86Max
pooling

Figure 3.10: Example of the max pooling operation being performed on 2×2
sub-images with a stride of 2 pixels.

Fully-connected layer

Within the context of the FC layers, every neuron in a particular layer is
connected to every neuron in the next layer (akin to the hidden layers con-
ceptualised in Figure 3.3). The FC layers process the trained features (output
of a �attened version of the �nal pooling layer) for the purpose of assigning
the input image to one of several classes in an optimal way. The �attening op-
eration transforms a three-dimensional input volume into a one-dimensional
array. The last FC layer outputs an N -dimensional vector where N repre-
sents the number of classes. The aforementioned vector serves as input for a
softmax layer.

Softmax layer

The softmax function, also referred to as the normalised exponential, takes
any N -dimensional vector of arbitrary real values, that is the output of the
last FC layer within the context of a CNN, and transforms it into an N -
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dimensional vector of real values (probabilities) in the interval [0, 1] that
sum to 1. The softmax function is implemented as follows,

pj =
eyj∑N
k=1 e

yk
for j = 1, . . . , N. (3.4)

These probabilities may then be used to assign an input image to one of N
disjoint classes (during the evaluation phase) and for the computation of the
loss function (during the training phase).

3.4.2 Training and regularisation

During each forward pass of the training phase, information from the input
values (within the context of a generic neural network) or the input image
(within the context of a CNN) is propagated through the di�erent layers of
the network to obtain the predicted (network) output. The predicted out-
put is then compared to the target (desired) output. The di�erence between
the predicted and target output is referred to as the loss (error), which is
subsequently used during the so-called backward pass to update the weights
(parameters) within each layer of the network using a backpropagation algo-
rithm like SGD (Li et al., 2012). The SGD algorithm iteratively updates the
weights using a batch of training data so as to minimise the error function
and may be denoted as follows

wl+1 = wl − η∇E(wl), (3.5)

where w denotes the weight vector, l the iteration number, η the learning
rate and ∇E(w) the gradient of the loss function. It is important to note
that within the context of SGD, the average loss across the entire batch
(subset of the training data) is used to update the weights. The calibration
of the learning rate is important within the context of the convergence of
the network in the sense that being stuck in a local minimum or oscillations
around the optimum value has to be avoided. The addition of a momentum
term to the parameter update constitutes a popular strategy for mitigating
the above-mentioned convergence issues (Sutskever et al., 2013). The SGD
algorithm with momentum (SGDM) updates the weights as follows

wl+1 = wl − η∇E(wl) + γ(wl −wl−1), (3.6)

where the momentum value γ determines the in�uence of the previous update
on the current iteration. It is important to note that during each training
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iteration a batch of data (that is a subset of the available training data) is
presented to the network. The presentation of all of the available batches
represents an epoch. All of the available batches are again presented to the
updated network during subsequent epochs until su�cient convergence has
been reached.

The remainder of this section is devoted to other techniques (that is the in-
corporation of batch normalisation and dropout layers) commonly employed
within the context of deep learning for the speci�c purpose of combatting
over�tting.

Regularisation refers to a number of techniques that are employed during
training in order to prevent the network from over�tting to the training data
and reduce the generalisation error. The concept of over�tting is illustrated
in Figure 3.11. Over�tting occurs when a model learns noise and data specif-
ically associated with the training data. This impacts negatively the model's
ability to generalise to unseen data and typically leads to poor performance
for the evaluation data. One of the techniques for combatting over�tting is
to employ a validation set. Since the data in the validation set has not been
used for training purposes, the local minimum in the error curve can be used
as a stopping criterion.

Epoch

Over�tting

Error
Training set

Validation set

Figure 3.11: Conceptualisation of over�tting.

• A batch normalisation (BN) layer normalises an activation map
across an entire batch, by subtracting the batch mean and dividing by
the batch standard deviation. A BN layer therefore shifts and scales
the relevant activation map by learnable parameters (Io�e & Szegedy,
2015). BN layers are typically inserted between the convolutional and
ReLU layers in order to accelerate convergence during training. BN
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has also been shown to reduce the sensitivity of the training procedure
with respect to weight initialisation.

• A dropout layer simply removes a random set of activations within
the layer in question by setting these activations equal to zero, thereby
essentially forcing the network to be redundant. This implies that the
network should be able to provide the correct classi�cation or out-
put even when certain activations are removed, therefore rendering the
network less prone to over�tting, which in turn leads to better gener-
alisation. A simple example of the dropout algorithm is provided in
Figure 3.12.

Figure 3.12: FC layers before and after the implementation of the droput
algorithm. - Source: https://www.doc.ic.ac.uk/~js4416/163/website/

img/neural-networks/dropout.png .

3.5 Detection of the region of interest

In this section, the architecture of and training protocol for the proposed
CNN which facilitates the automatic detection of a suitable ROI that contains
the entire ear shell, are discussed in detail. Recall that the purpose of the
proposed CNN is to classify sub-images (patches) of an ear image as either
foreground or background, which is followed bymorphological post-processing.
The manually selected ROI serves as a ground truth for evaluating this part
of the proposed system.
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Figure 3.13: (a) A grey-scale image of size 702 × 492 pixels from the AMI
ear database. (b) A grey-scale image of size 204 × 272 pixels from the IIT
Delhi ear database.

Data

Two di�erent datasets are independently considered for training respective
CNNs and evaluating the proposed automated ROI detection protocol, that
is the Mathematical Analysis of Images (AMI) ear database and the Indian
Institute of Technology (IIT) Delhi ear database. These databases are dis-
cussed in more detail in Chapter 6. Examples from the AMI and IIT Delhi
ear databases are depicted in Figures 3.13 (a) and (b) respectively. In the
case of the AMI database, each image is �rst converted from RGB to grey-
scale, while the images in the IIT Delhi database were originally captured in
grey-scale format. For each dataset, ear images from di�erent individuals are
used for training, validation and evaluation purposes. The training set (seen
data) is used to learn the parameters (weights) for the CNN in question, the
validation set is used for avoiding over�tting by enforcing a stopping crite-
rion, while the evaluation set is used to measure the performance of the CNN
on unseen data.

While some results are presented here by means of selected examples, a
more sophisticated cross validation algorithm is proposed and reported on
in Chapter 6 in order to gauge the pro�ciency of the model, as well as its
capability to generalise to unseen data.

Each ear image is subdivided into overlapping regions by sliding a 82×82
square window across the image in question. Each sub-image in the training

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. IMAGE SEGMENTATION 36

and validation set is manually annotated as either positive (foreground) or
negative (background). Typical examples of positive and negative sub-images
from the AMI ear database are presented in Figures 3.14 and 3.15 respec-
tively. These sub-images are saved to a database (that can be e�ciently
accessed) and serve as input for the network.

(a) (b) (c)

Figure 3.14: Examples of positive sub-images of size 82× 82 pixels from the
AMI ear database. These positively labelled sub-images are considered to
be part of the foreground and contain contours typically associated with the
shell of a human ear.

(a) (b) (c)

Figure 3.15: Examples of negative sub-images of size 82× 82 pixels from the
AMI ear database. These negatively labelled sub-images are considered to
be part of the background and contain hair and/or homogeneous skin.
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CNN architecture and training

The process of determining the appropriate hyper-parameters and best struc-
ture of a CNN for a particular task often relies on trial and error. After ex-
perimenting with a number of structures and hyper-parameters the network
architecture depicted in Figure 3.16 was deemed optimal. The CNN consists
of four convolutional layers, where each of these layers is followed by a BN,
ReLU and/or max pooling layer. The �nal pooling layer is followed by two
FC layers.

Input image

82 × 82

3 × 3 CONV1
BN
ReLU
2 × 2 POOL1

3 × 3 CONV2
BN
ReLU

3 × 3 CONV3
BN
ReLU

3 × 3 CONV4
BN
ReLU
2 × 2 POOL2

FC
ReLU FC

41×41×32 41×41×64

41×41×96
20×20×128

neg

pos

y

500

Softmax

Flattening

Figure 3.16: A depiction of the CNN architecture employed in this thesis for
the purpose of automatically detecting a suitable ROI within an image of a
human ear.

Table 3.1 provides a more detailed summary of the proposed network
architecture.

The �rst convolutional layer (CONV1) processes an input image of size
82×82×1 with 32 di�erent kernels (�lters). Each kernel has a size of 3×3
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pixels, while a convolutional stride of 1 pixel is employed. This layer therefore
contains 82×82×32 = 215 168 neurons, where each neuron has 3 × 3+1=10
trainable parameters (weights). The activation maps are normalised by in-
corporating a BN layer between the convolutional and ReLU layers in order
to accelerate convergence and render the network less sensitive to parame-
ter initialisation. The resulting activation maps are subsequently subjected
to max pooling (POOL1) by considering 2× 2 sub-images and employing a
stride of 2 pixels. This results in an output volume of size 41×41×32.

The second and third convolutional layers (CONV2 and CONV3) em-
ploy 64 and 96 di�erent kernels (�lters) respectively. Each kernel has a size
of 3×3 pixels, while a convolutional stride of 1 pixel is employed. Each of
the above convolutional layers are followed by a BN and ReLU layer, while
no pooling layers are employed within the context of CONV2 and CONV3.

The fourth convolutional layer (CONV4) processes the output of CONV3
with 128 di�erent kernels (�lters). Each kernel has a size of 3×3 pixels, while
a convolutional stride of 1 pixel is employed. After the application of a BN
and ReLU layer, the output of CONV4 is down-sampled through max pooling
(POOL2) by considering 2×2 sub-images and employing a stride of 2 pixels.

The �rst FC layer has 500 neurons. After the application of the ReLU
function, dropout with a probability of 0.3 is enforced, thereby e�ectively
setting the output of the relevant FC neurons to zero. The output of the
second (last) FC layer is fed to a 2-way softmax function which results in a
probability distribution across the positive and negative binary classes. The
�nal layer constitutes a classi�cation layer, which also calculates the cross
entropy loss function during training.

The CNN is trained by employing the SGDM algorithm with a momentum
value of γ = 0.9 and an initial learning rate of η = 0.001. During training,
the initial learning rate is reduced after every 8 epochs. During each training
iteration, which constitutes one forward and one backward pass, a batch that
contains 128 training images is presented to the CNN. Recall that an epoch
constitutes all the iterations required to traverse the entire training set. The
training algorithm is run for a maximum of 100 epochs. In order to improve
the convergence of the network, the weights of the �rst convolutional layer
are initialised using normally distributed random numbers with a standard
deviation of 0.0001.

It is important to note that the proposed CNN is trained from scratch. No
�ne-tuning of an existing pre-trained network (transfer learning) is therefore
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conducted.

After each epoch, the accuracy of the network is gauged by employing an
independent validation set. In this way an early stopping criterion can be
employed in order to avoid over�tting.

Layer Activation map Kernel size
Stride
(pixels)

Zero-padding
(pixels)

Input 82× 82× 1
CONV1 82× 82× 32 3× 3 1 1
POOL1 41× 41× 32 2× 2 2
CONV2 41× 41× 64 3× 3 1 1
CONV3 41× 41× 96 3× 3 1 1
CONV4 41× 41× 128 3× 3 1 1
POOL2 20× 20× 128 2× 2 2
FC1 1× 1× 500

Dropout (30%) 1× 1× 500
FC2 2

Table 3.1: The network architecture and hyper-parameters employed by the
proposed system.

Selected illustrational results and post-processing

Selected results illustrating the pro�ciency of the proposed CNN-based model
for the purpose of segmenting a human ear into foreground and background
regions for the AMI ear database are presented in Figure 3.17. Figures 3.17
(a), (c) and (e) depict the probability that a sub-image belongs to the fore-
ground (contains contours associated with the shell of an ear) as a shade of
blue for ears belonging to three di�erent individuals. After a threshold of 0.5
has been applied to the aforementioned probabilities, the acquired binary
images are depicted in Figures 3.17 (b), (d) and (f) respectively. Although
it is clear that the respective white regions (detected foreground) within the
aforementioned binary images contain the entire ear shell, these images are
still characterised by signi�cant levels of noise, while the boundaries of the
foreground regions are highly irregular.

In order to reduce the noise in the binary images depicted in Figure 3.17
and render the foreground boundaries more regular, the images are subjected
to morphological post-processing. For this purpose morphological closing
(with a circular structuring element of radius 10 pixels) is employed. The
results are depicted in Figure 3.18.
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Figure 3.17: (Left) Results of applying the proposed CNN-based model for
the purpose of automated ROI detection within the context of the AMI
ear database. The probability that a sub-image belongs to the foreground
(contains contours associated with the shell of an ear) is represented by a
shade of blue. (Right) Binary versions of the corresponding images on the
left after a threshold of 0.5 has been applied.
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Figure 3.18: The automatically detected ROIs after a morphological closing
operation has been applied to the binary images depicted in Figure 3.17.
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Figure 3.19: Qualitative depiction of the pro�ciency of the proposed auto-
mated ROI detection protocol within the context of the AMI ear database.
(Left) Manually selected ROIs. (Right) Automatically detected ROIs cor-
responding to the images on the left.

In Figure 3.19 the manually selected and automatically detected ROIs are
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shown for comparison purposes. A quantitative analysis of the pro�ciency of
the proposed automated ROI detection protocol is conducted and reported
on in Chapter 6, in which case the manually selected ROI serves as a ground
truth.

3.6 Concluding remarks

In this chapter, a CNN-based approach was proposed to facilitate automatic
ROI detection within the context of ear-based biometric authentication.
The CNN-based model was trained from scratch and (by visual inspection)
achieves very satisfactory results in the sense that it appears to be robust
with respect to noise, as well as variations in scale, location and orientation.
The proposed CNN-based protocol, combined with appropriate morpholog-
ical post-processing, is pro�cient in detecting a suitable ROI that contains
the prominent contours associated with the entire ear shell. A quantitative
analysis of the proposed ROI-detection protocol will be discussed in more
detail in Chapter 6.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 4

Contour detection

4.1 Introduction

In this chapter a strategy is proposed for the detection of prominent contours
associated with the entire ear shell. Recall that an algorithm capable of
automatically detecting the region of interest (ROI) containing the entire ear
shell was proposed in the previous chapter. One of the main objectives of
the aforementioned ROI-detection protocol (or manual ROI selection) was to
eliminate hair and jewellery, which are often associated with prominent edges,
and may therefore be mistaken for ear contours. As depicted in Figure 4.1,
the proposed contour detection protocol therefore involves four main stages,
that is

(1) preprocessing (see Section 4.2),

(2) edge detection (see Section 4.3),

(3) post-processing (see Section 4.4), and

(4) ROI masking (see Section 4.5).

After all of the prominent contours, including those associated with hair
and jewellery, have been detected within any given grey-scale input image
(that is the output of stage 3), the detected ROI is employed as a mask in
order to remove all of the undesired contours (as explained in Section 4.5).
Features are subsequently extracted from the remaining (relevant) contours

43
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(that is the output of stage 4) by employing the Radon transform, as will be
explained in the next chapter.
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�lter
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Edge detection

Canny
�lter

Stage 2

Post-processing

Morphological
operations

Stage 3
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Detected contours ROI masking

Stage 4

Figure 4.1: Schematic representation of the proposed contour detection pro-
tocol.

4.2 Preprocessing

The purpose of performing preprocessing techniques on an input image within
the context of contour detection is to improve the quality of the image by
suppressing undesired distortions while preserving sharp details such as edges

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. CONTOUR DETECTION 45

associated with the ear shell. During preprocessing, input images from the
Mathematical Analysis of Images (AMI) ear database are �rst converted from
RGB to grey-scale format, while the input images in the Indian Institute of
Technology (IIT) Delhi ear database were originally captured in grey-scale
format. Within the context of linear spatial �ltering, the application of a
Gaussian lowpass �lter to the aforementioned grey-scale images is therefore
deemed appropriate.

A Gaussian lowpass �lter is well suited for the purpose of suppressing the
e�ect of noise in the ear images, while also preserving prominent edges to
a large extent. An input ear image is smoothed by �ltering the image with
a Gaussian kernel (see Figure 4.2). This kernel is based on the following
Gaussian function

g(m,n) = e
−
(
m2+n2

2σ2

)
, (4.1)

where σ denotes the standard deviation which determines the "spread" of the
kernel, while m and n are positive integers. The resulting Gaussian kernel is
normalised so that the �lter coe�cients sum to one.

The smoothing of an input ear image is therefore achieved by applying a
Gaussian kernel of size 9×9, and with the standard deviation speci�ed as σ =
3, to the image in question. The aforementioned parameters were found to be
optimal in removing a su�cient amount of noise and non-prominent edges,
while retaining prominent edges typically associated with the contours of the
ear shell. Examples of ear images from the AMI database are presented in
Figures 4.3 (a), (c) and (e), while the corresponding preprocessed (smoothed)
versions are depicted in Figures 4.3 (b), (d) and (f) respectively.
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Figure 4.2: A Gaussian kernel of size 9×9 with σ = 3.
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Figure 4.3: Preprocessing. (Left) Input images from the AMI ear database.
These images are associated with the same individual, but the head is tilted
in three di�erent ways, that is down, front and up respectively. (Right)
Smoothed versions of the corresponding images on the left after the applica-
tion of the Gaussian �lter depicted in Figure 4.2.
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4.3 Edge detection

The Canny edge detector (Canny, 1986) is employed for the purpose of de-
tecting prominent contours associated with the ear shell within the prepro-
cessed (smoothed) versions of the ear images. The Canny algorithm involves
a multi-step process (see Figure 4.4) that enables the inference of an optimal
edge detector based on an estimation of the gradient magnitude and direc-
tion. This is followed by the identi�cation of local maxima within an matrix
(image) representing the gradient magnitude at di�erent spatial positions.
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and
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Non-maximum
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Double thresholding
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Edge map

Figure 4.4: Conceptualisation of the Canny edge detection algorithm.

The magnitude and direction of the gradient are estimated from the �rst
derivatives (in the horizontal and vertical directions) of the Gaussian kernel
output, which are consequently represented by matrices (images).

A non-maximum suppression process is subsequently applied to the ma-
trix (image) representing the gradient magnitude, therefore facilitating the
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identi�cation of local maxima. These local maxima constitute candidate
edges that are one pixel thick.

False edge segments that are associated with a low gradient magnitude
(weak edges) may however still be present and require deletion. Isolated
edge segments of average strength that are not collinear with strong edges
(are associated with su�ciently di�erent edge directions) are also deemed
to be false segments and should therefore be deleted as well. Furthermore,
edge segments of average strength that are collinear with strong edge seg-
ments should be connected with the aforementioned segments and therefore
retained. All of the strong segments are retained without exception.

A hysteresis tracking process with di�erent thresholds−these thresholds
are obtained through Otsu's algorithm (Otsu, 1979)−is applied for the pur-
pose of facilitating the aforementioned objectives of deletion and connection.
Candidate edge pixels with a gradient magnitude below the lower threshold
are deemed weak, while those with a gradient magnitude above the higher
threshold are deemed strong. The other candidate edge pixels are deemed to
be of average strength.

Typical edge detection results for the AMI ear database, through the
application of the Canny algorithm to smoothed versions of the input images,
are depicted in Figure 4.5.

4.4 Post-processing

After the application of the Canny algorithm, all of the the detected edges
are one pixel thick. Since the Radon transform will be employed for the
purpose of extracting suitable features from an ROI-masked edge image (as
will be explained in the next chapter), it is advantageous that the edges
in question are su�ciently thick so as to ensure easily perceptible peaks in
projection pro�les. Morphological dilation with a disk-shaped structuring
element of radius 2 pixels are therefore applied to the original edge images.
This ensures that the edges are three pixels thick and serves the additional
purpose of connecting broken edges (see Figure 4.6).
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Figure 4.5: Edge detection. (Left) Preprocessed (smoothed) ear images from
the AMI ear database. The images depicted in Figure 4.3 (right) have been
reproduced here. (Right) Detected edges corresponding to the images on
the left.
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Figure 4.6: Post-processing. (Left) Original edge maps within the context
of the AMI ear database. The images depicted in Figure 4.5 (right) have
been reproduced here. (Right) Dilated edge images corresponding to the
maps on the left.
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4.5 ROI masking

During the �nal stage of contour detection the binary image constituting a
manually speci�ed or automatically detected ROI is employed as a mask in
order to remove all of the edges not associated with ear contours. This is
followed by the removal of all connected components with a length smaller
than a predetermined threshold. In the case of the IIT Delhi ear database
the image borders are also cleared, that is, all connected components that
touch the border are removed.

The results for the three samples from the AMI ear database, which
have been considered for illustrational purposes throughout this chapter, are
presented in Figure 4.7.

The results for three samples from the IIT Delhi ear database are pre-
sented in Figure 4.8. The same protocol (as the one for the AMI ear database)
has been followed, except for the fact that border clearing was required (see
Figure 4.9)
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Figure 4.7: ROI-masking. (Left) Original grey-scale versions of ear images
from the AMI ear database. The images depicted in Figure 4.3 (left) have
been reproduced here. The boundaries of the respective automatically de-
tected ROIs are indicated in red. (Right) Detected prominent contours
within the corresponding images on the left after ROI-masking and the re-
moval of small connected components.
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Figure 4.8: ROI-masking. (Left) Original versions of ear images from the
IIT Delhi ear database. These images are associated with three di�erent
individuals. The boundaries of the respective automatically detected ROIs
are indicated in red. (Right) Detected prominent contours within the cor-
responding images on the left after ROI-masking.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. CONTOUR DETECTION 54

50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

(a)

50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

(b)

50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

(c)

50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

(d)

50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

(e)

50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

(f)

Figure 4.9: Border clearing. (Left) Detected prominent contours within
the context of the IIT Delhi ear database after ROI-masking. The images
depicted in Figure 4.8 (right) have been reproduced here. (Right) Detected
prominent contours associated with the images on the left after the border
has been cleared and small connected components have been removed.

4.6 Concluding remarks

In this chapter a protocol for detecting prominent contours associated with
the shell of a human ear was proposed. This protocol is based on Canny
edge detection, while ROI-based masking is employed in order to ensure that
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contours associated with hair and jewellery are discarded. An algorithm
capable of automatically detecting such an ROI was proposed in Chapter 3.

Preprocessing and post-processing is conducted in order to ensure that
noise and short edge segments are removed, and that the edges are su�ciently
thick to facilitate feature extraction via the Radon transform. The proposed
strategy that facilitates feature extraction and feature matching, as well as
the proposed veri�cation protocol, is discussed in detail in the next chapter.
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Chapter 5

Feature extraction, feature

matching, and veri�cation

5.1 Introduction

In this chapter a protocol is proposed for extracting suitable features from a
binary image that contains prominent contours associated with the shell of
a human ear (see Figure 5.1). The aforementioned protocol is based on the
calculation of the discrete Radon transform (DRT) of the input image and
is geared towards the detection of prominent straight lines within the image
(see Section 5.2). This is followed by feature normalisation (see Section 5.3)
and template matching (see Section 5.4). The proposed veri�cation protocol,
which is based on the construction of a so-called ranking veri�er, is �nally
discussed in Section 5.5. The protocol for detecting prominent contours asso-
ciated with the ear shell through the application of the Canny edge detector,
followed by suitable post-processing, was discussed in the previous chapter.

The rationale behind the extraction of manually tailored features within
the current context, followed by template matching, as opposed to the ex-
traction of learned features by (for example) employing a neural network,
lies in the fact that DRT-based features have proved to be very reliable in
pro�ciently describing binary images that contain curved lines on a number
of previous occasions, which include o�ine handwritten signature veri�cation
(Coetzer et al., 2004) and hand vein-based biometric authentication (Beukes,
2018). The aforementioned features are therefore reliable within the context
of both behavioural and physiological biometrics. It is also relatively simple

56
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Figure 5.1: Prominent contours. (Left) A binary image that contains the de-
tected prominent contours associated with the shell of a human ear. (Right)
The detected prominent contours superimposed onto the original ear image.

to render the aforementioned features translation, scale and rotation invari-
ant (as will be explained in Section 5.3).

In order to obtain reliable learned features through a process like deep
learning, a large amount of training data is typically required for each in-
dividual enrolled into the system, which is not the case for the application
being investigated in this thesis.

Feature extraction is a crucial step within the context of pattern recogni-
tion. A good feature set should satisfy the following requirements: Firstly,
feature vectors should be highly discriminative in the sense that those fea-
tures extracted from di�erent samples of the same class should be relatively
similar (associated with a small intraclass variance), while feature vectors
extracted from di�erent classes should di�er substantially (associated with
a large interclass variance). Secondly, feature vectors should be robust with
respect to variations in scale, translation and orientation.

The proposed feature extraction protocol can be summarised as follows:
Feature vectors are extracted from an image that contains prominent con-
tours associated with the ear shell by applying the DRT to the image (see Sec-
tion 5.2). The aforementioned feature vectors are subsequently normalised
in such a way that they constitute scale, translation and rotation invariant
representations of the original image (see Section 5.3). After appropriate
normalisation, each projection pro�le (obtained from a di�erent angle via
the DRT) constitutes a feature vector. The Euclidean distance is �nally em-
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ployed for the purpose of feature matching (see Section 5.4). The distance
between two ears is therefore quanti�ed by the average Euclidean distance
between the corresponding normalised feature vectors.

The proposed feature extraction protocol is conceptualised in Figure 5.2.

5.2 Feature extraction

The proposed feature extraction protocol is based on the calculation of the
discrete Radon transform (DRT) of the binary contour image. These global
features are able to describe distinguishable line segments that form part
of the prominent contours associated with the shell of a human ear. The
DRT of an image is obtained when multiple, parallel-beam projections of
the image are calculated from equally distributed angles within an interval
θ ∈ [0◦, 180◦) (Coetzer, 2005). Let I(m,n) denote the binary image of size
M × N pixels containing the prominent contours associated with the shell
of a human ear (see Figure 5.1 (a)), where the intensity of the i -th pixel is
denoted by Ii, i = 1, ...,MN . The DRT of the image can be expressed as
follows

Rj =
MN∑
i=1

δijIi, for j = 1, 2, . . . , βΘ, (5.1)

where Rj denotes the j th beam-sum which constitutes the cumulative inten-
sity of the pixels that overlap with the j th beam, β denotes the number of
non-overlapping beams per angle, Θ represents the total number of angles
and δij denotes the weight indicative of the contribution of the i -th pixel
towards the j th beam-sum. The aforementioned weight is typically propor-
tional to the fraction of the surface area of the pixel that overlaps with the
beam in question and equals one if the entire pixel falls within the beam.
A detailed description of the theory and implementation of the DRT can be
found in (Coetzer, 2005).

The aforementioned DRT of an input image therefore constitutes a matrix
where each column of the DRT represents a projection pro�le of the input
image acquired from a speci�ed angle θ. The acquisition of a single projection
pro�le from a speci�c angle θ is conceptualised in Figure 5.3. When converted
into a grey-scale image, the DRT is often referred to as a sinogram.
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Figure 5.2: Schematic representation of the proposed feature extraction pro-
tocol. Rotational invariance is ensured by iteratively shifting the columns of
two feature sets with respect to each other (with wrap-around) before they
are matched, after which the alignment that results in the smallest average
Euclidean distance between the corresponding normalised feature vectors is
deemed optimal (see Section 5.3).
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Figure 5.3: Conceptualisation of the acquisition of a single parallel-beam
projection pro�le of a typical contour image from an angle θ. Although the
terms "source" and "sensors" are applicable to computer-aided tomography
(CAT) scans, the pixels that overlap with a speci�c beam are simply summed
within the current context. An appropriate weight is assigned to pixels that
only partially overlap with the beam in question.

In this thesis it is proposed that projection pro�les are calculated for a
full revolution, that is from angles in the interval θ ∈ [0◦, 360◦), instead of
the required θ ∈ [0◦, 180◦). The projection pro�les calculated from angles
in the interval θ = [180, 360) simply constitute re�ections of those already
calculated in the interval θ ∈ [0◦, 180◦). The aforementioned (seemingly
redundant) protocol is followed in order to facilitate rotational invariance
(as explained in more detail in Section 5.3).

For illustrational purposes three samples of contour images from the
Mathematical Analysis of Images (AMI) ear database are considered. These
contour images were constructed from the originally acquired ear images be-
longing to the same individual, but with the head tilted in three di�erent
ways, that is downwards, towards the front and upwards, respectively. The
respective DRTs (sinograms) of the aforementioned contour images are de-
picted in Figure 5.4. Each sinogram has 160 columns (the number of equally
distributed angles in the interval θ ∈ [0◦, 360◦)), where each column repre-
sents a projection pro�le.
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Figure 5.4: Contour images and their respective sinograms. (Left) Contour
images within the context of the AMI ear database. These images belong
to the same individual with the head tilted downwards, towards the front,
and upwards, respectively. (Right) Sinograms corresponding to the contour
images on the left. Each sinogram has Θ = 160 columns and therefore
represents Θ = 160 projection pro�les.
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Within the context of the IIT Delhi ear database, three samples of contour
images belonging to the same individual and their respective sinograms are
presented in Figure 5.5 for illustrational purposes.
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Figure 5.5: Contour images and their respective sinograms. (Left) Contour
images within the context of the IIT Delhi ear database. These images belong
to the same individual. (Right) Sinograms corresponding to the contour
images on the left. Each sinogram has Θ = 160 columns and therefore
represents Θ = 160 projection pro�les.
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5.3 Feature normalisation

As previously mentioned, a good feature set within the current context should
be una�ected by (that is remain unchanged despite) variations in scale,
translation and orientation. Feature normalisation is therefore required and
achieved by implementing a protocol that involves the following steps:

Firstly, in order to ensure scale and translational invariance, all of the
zero-valued components are removed (decimated) from each projection pro�le
(only the non-zero components are retained), after which the dimension of
each projection pro�le is adjusted to a prede�ned value. This is achieved by
compressing or expanding all of these decimated vectors to a �xed length of
` = 160 through linear interpolation.

A new matrix (that replaces the original sinogram) is therefore con-
structed by packing the adjusted projection pro�les as columns into the
matrix. The intensities of the aforementioned new matrix are subsequently
adjusted by dividing each matrix entry by the standard deviation across all
of the entries. The columns of the resulting matrix therefore constitute nor-
malised scale and translation invariant feature vectors that will subsequently
be employed for the purpose of feature matching.

By considering the same samples as those associated with Figures 5.4
and 5.5, the respective results after the implementation of the proposed fea-
ture normalisation protocol are presented in Figures 5.6 and 5.7.

As previously mentioned, the DRT is calculated from angles that con-
stitute a full revolution, that is angles within the interval θ ∈ [0◦, 360◦).
This (seemingly redundant) strategy is followed in order to render the DRT
periodic which allows for an elegant protocol for ensuring rotational invari-
ance. This protocol is discussed within the context of feature matching in
the following section.

5.4 Feature matching

In this section a feature matching protocol is proposed for quantifying the
di�erence between two feature sets after appropriate feature normalisation.
This protocol simply involves the calculation of the average Euclidean dis-
tance between the corresponding feature vectors that belong to the feature
sets in question.
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Figure 5.6: Sinograms before and after normalisation. (Left) Sinograms for
ear images from the AMI ear database. The images depicted in Figure 5.4
(right) have been reproduced here. (Right) Scale and translation invariant
feature sets that correspond to the sinograms on the left. The columns of
these feature sets (matrices) constitute normalised feature vectors.
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Figure 5.7: Sinograms before and after normalisation. (Left) Sinograms
for ear images from the IIT Delhi ear database. The images depicted in
Figure 5.5 (right) have been reproduced here. (Right) Scale and translation
invariant feature sets that correspond to the sinograms on the left. The
columns of these feature sets (matrices) constitute normalised feature vectors.
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Rotational invariance is ensured by iteratively shifting (with wrap-around)
the positions of the normalised feature vectors (columns) associated with a
questioned feature set (matrix) with respect to those belonging to a refer-
ence (template) feature set. The average Euclidean distance between the
corresponding feature vectors associated with the newly aligned feature sets
are calculated after each iteration. During re-alignment, the position of (for
example) the �rst feature vector associated with a questioned feature set is
shifted in such a way that it corresponds to the position of every feature vec-
tor associated with the reference (template) feature set, while the sequence
of the feature vectors within the respective feature sets is maintained. This
involves a wrap-around strategy, which is made possible by the periodic na-
ture of the DRT. When a feature vector occupies the last column of the ques-
tioned (shifting) feature set during the current iteration, it will occupy the
�rst column of the feature set during the subsequent iteration. Every possible
di�erence in orientation between the ear images being matched, which may
theoretically encompass an entire revolution, is therefore permissible. The
feature matching protocol, together with the protocol for ensuring rotational
invariance, are conceptualised in Figure 5.8.

Selected illustrational results for feature matching

In order to provide additional perspective, some selected results that illus-
trate the usability of the feature matching technique proposed in this section
are presented here within the context of the AMI ear database. A "zoomed"
image of an ear that belongs to the claimed individual (who is typically fac-
ing front) is employed for reference purposes (see Figure 5.9). The respective
dissimilarities (average Euclidean distances) between the aforementioned ref-
erence ear and three ears that also belong to the claimed individual, but with
the head tilted in a three di�erent ways (see Figure 5.10), are listed in Ta-
ble 5.1. The respective dissimilarities (average Euclidean distances) between
the above-mentioned reference ear (see Figure 5.9) and three ears that do not
belong to the claimed individual (see Figure 5.11), are listed in Table 5.2.
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Figure 5.8: Schematic representation of the proposed feature matching pro-
tocol that also ensures rotational invariance.
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Figure 5.9: (a) An example of a reference (template) image from the AMI
ear database. (b) The corresponding feature set.

Reference ear Questioned authentic ear Dissimilarity

Figure 5.9 (a) Figure 5.10 (a) (down) 10779.696
Figure 5.9 (a) Figure 5.10 (b) (front) 11077.026
Figure 5.9 (a) Figure 5.10 (c) (up) 11758.422

Table 5.1: The respective dissimilarities (average Euclidean distances) be-
tween the reference (template) ear depicted in Figure 5.9 and the questioned
authentic ears depicted in Figure 5.10.

Reference ear Questioned imposter ear Dissimilarity

Figure 5.9 (a) Figure 5.11 (a) (down) 21102.056
Figure 5.9 (a) Figure 5.11 (b) (down) 19532.987
Figure 5.9 (a) Figure 5.11 (c) (down) 24087.153

Table 5.2: The respective dissimilarities (average Euclidean distances) be-
tween the reference (template) ear depicted in Figure 5.9 and the imposter
ears depicted in Figure 5.11.
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Figure 5.10: Feature matching. (Left) Original grey-scale ear images associ-
ated with the same individual as the one referred to in Figure 5.9, but with
the head tilted in three di�erent ways, that is downwards, towards the front
and upwards, respectively. (Right) Scale and translation invariant feature
sets corresponding to the images on the left. Rotational invariance is achieved
by iteratively shifting the positions of the columns of these questioned matri-
ces one pixel towards the right (with wraparound), while the positions of the
columns of the reference (template) matrix, depicted in Figure 5.9 (b), re-
main unchanged. The dissimilarity between the ears in question constitutes
the average Euclidean distance between the corresponding feature vectors
associated with the optimally aligned feature sets.
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Examples of ears belonging to imposters

Figure 5.11: Feature matching. (Left) Original grey-scale ear images associ-
ated with three di�erent individuals than the one referred to in Figure 5.9.
(Right) Scale and translation invariant feature sets corresponding to the
images on the left. Rotational invariance is achieved by iteratively shifting
the positions of the columns of these questioned matrices one pixel towards
the right (with wraparound), while the positions of the columns of the refer-
ence (template) matrix, depicted in Figure 5.9 (b), remain unchanged. The
dissimilarity between the ears in question constitutes the average Euclidean
distance between the corresponding feature vectors associated with the opti-
mally aligned feature sets.

It is clear from Tables 5.1 and 5.2 that the dissimilarities (average Eu-
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clidean distances) associated with questioned ears belonging to imposters
are approximately twice as large as those associated with questioned ears
belonging to the claimed individual.

5.5 Veri�cation

In this section a protocol is proposed for the purpose of establishing whether
a claim that a questioned ear belongs to a certain individual is authentic or
fraudulent. This is achieved by comparing the questioned ear to a number of
ears in the database. The aforementioned ears include a reference ear that
is known to belong to the claimed individual, as well as ears that belong to
other so-called ranking individuals.

The dissimilarity between the questioned ear and the reference ear, as
well as the respective dissimilarities between the questioned ear and those
belonging to the ranking individuals are placed in a list, with the smallest
dissimilarity at the top of the list and the largest dissimilarity at the bot-
tom of the list. Veri�cation is subsequently based on the relative position
(ranking) of the dissimilarity associated with the reference ear in the afore-
mentioned list. The claim may for example be deemed valid if and only if
the reference ear has a ranking of one, in which case the questioned ear is ac-
cepted as authentic. Alternatively, the system may be rendered more lenient
by requiring that the reference ear be ranked higher than or equal to some
threshold value, where the threshold value is greater than one. An optimal
threshold value may also be determined empirically by employing a suitable
data partitioning protocol as will be explained in the next chapter.

5.6 Concluding remarks

In this chapter the DRT was proposed for the purpose of extracting features
from a contour image associated with the shell of a human ear. The resulting
feature set was normalised in such a way that it constitutes a translational,
rotational and scale invariant representation of the contours in question. Fea-
ture matching is achieved by calculating the average Euclidean distance be-
tween the corresponding feature vectors associated with the respective feature
sets. Veri�cation is �nally achieved by constructing a ranking veri�er.

In the next chapter the two datasets considered in this research are dis-
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cussed in detail. This is followed by an outline of the experimental pro-
tocol. Exhaustive experiments are also conducted in order to evaluate the
automated region of interest (ROI)-detection strategy, as well as the semi-
automated and fully automated ear-based authentication systems, proposed
in this thesis.
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Chapter 6

Experiments

6.1 Introduction

In this chapter exhaustive experiments are conducted in order to gauge the
pro�ciency of the proposed automated region of interest (ROI) detection al-
gorithm, as well as the respective pro�ciencies of the semi-automated and
fully automated ear-based biometric authentication systems developed in
this thesis. Recall that the ROI is manually speci�ed in the case of the
semi-automated system, while the ROI is automatically detected in the case
of the fully automated system. The aforementioned experiments are con-
ducted on two independent datasets. These datasets are described in detail
in Section 6.2. The experimental protocol that is followed for each of the in-
dividual experiments is outlined in Section 6.3. The experimental results are
presented and quantitatively analysed in Section 6.4. Finally, an overview
of the software developed and hardware utilised in this thesis is presented in
Section 6.5.

6.2 Data

The experiments are conducted on (1) the Mathematical Analysis of Images
(AMI) ear dataset and (2) the Indian Institute of Technology (IIT) Delhi ear
dataset. The aforementioned two independent datasets are discussed in the
following subsections.

73
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6.2.1 AMI ear dataset

The AMI ear database was acquired by Esther Gonzalez for her PhD thesis
in Computer Science (Gonzalez et al., 2012). This dataset consists of RGB
images that were captured under the same illumination conditions from a
�xed camera position and involves 100 di�erent individuals aged between 19
and 65 years. For each individual, seven images (six images of the right
ear and one image of the left ear) were captured at a resolution of 702×492
pixels, while the head is tilted in a speci�c way:

• Three of these images were captured from the right and therefore con-
tain the right ear (see Figure 6.1). The �rst image, which is referred
to as DOWN, was captured while the head is tilted downwards. In the
case of the second and third images, which are referred to as FRONT
and UP, the head is tilted towards the front and upwards respectively.

(a) (b) (c)

Figure 6.1: Examples of images from the AMI ear database. These images
contain the right ear of the same individual, while the head is tilted in three
di�erent ways, that is downwards, towards the front and upwards, respec-
tively.

• A further two images were also captured from the right and therefore
contain the right ear (see Figure 6.2). The �rst of these, which is
referred to as RIGHT, was captured while the head is tilted towards
the camera. In the case of the second image, which are referred to as
LEFT, the head is tilted away from the camera,
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(a) (b)

Figure 6.2: Examples of images from the AMI ear database. These images
contain the right ear of the same individual, while the head is tilted in two
di�erent ways, that is towards the right and towards the left, respectively.

• Another image, which is referred to as BACK, was captured from the
left while the head is tilted towards the front and therefore contains
the left ear (see Figure 6.3 (a)),

• The �nal image was captured from the right by employing a di�erent
focal length and therefore contains the right ear (see Figure 6.3 (b)).
This image (referred to as ZOOM) constitutes a zoomed in version of
image referred to as FRONT.

(a) (b)

Figure 6.3: Examples of images from the AMI ear database that belong to
the same individual. (a) This image was captured from the left while the
head is tilted towards the front and therefore contains the left ear. (b) This
image contains the right ear and constitutes a zoomed in version of the image
depicted in Figure 6.1 (b).
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6.2.2 IIT Delhi ear dataset

The IIT Delhi ear database contains touchless images provided by the Hong
Kong Polytechnic University (Kumar, 2007). This dataset consists of ear im-
ages that were acquired over a period of nine months from October 2006 to
June 2007 at IIT Delhi under di�erent indoor lighting conditions. These ear
images belong to students and sta� members aged between 14 and 58 years.
The dataset consists of 375 grey-scale images that belong to 125 di�erent in-
dividuals. Three ear images were therefore captured for each individual while
the head is tilted in a di�erent way. Each of these images has a resolution
of 272×204 pixels. Figure 6.4 depicts samples of ear images from the IIT
Delhi ear database.

(a) (b) (c)

Figure 6.4: Examples of images from the IIT Delhi ear database. These
images are associated with the same individual, but the head is tilted in
three di�erent ways.

6.3 Protocol

Recall that a ranking veri�er is employed in this thesis for the purpose of
establishing the authenticity of a questioned ear. All of the subsequent ex-
periments are conducted independently on both of the datasets introduced
in the previous section. The experimental protocol for three main (inde-
pendent) experiments are discussed in the remainder of this section. The
aforementioned experiments are dichotomized as follows:

(1) Experiment 1. This experiment investigates the pro�ciency of the pro-
posed semi-automated ear-based authentication system. The aforemen-
tioned system employs a protocol in which the ROI is manually speci�ed,
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followed by feature extraction, template matching and veri�cation. Re-
call that a questioned ear is matched to a sample belonging to the claimed
individual, as well as to ears that belong to a number of ranking indi-
viduals. The resulting distances are subsequently ranked from small to
large. Two sub-experiments are therefore conducted:

(a) Experiment 1A. In this sub-experiment a questioned ear is only
accepted when the distance associated with the reference sample
belonging to the claimed individual is the smallest, in which case
the questioned ear has a ranking of one. This is referred to as the
rank-1 scenario.

(b) Experiment 1B. In this sub-experiment a questioned ear is ac-
cepted when it has a ranking that is better than or equal to a spe-
ci�c optimal ranking. The optimal ranking (which may be greater
than one) is estimated by considering a separate set of optimisation
individuals. This is referred to as the optimal ranking scenario.

(2) Experiment 2. This experiment investigates the pro�ciency of the
proposed automated ROI detection algorithm.

(3) Experiment 3. This experiment investigates the pro�ciency of the
proposed fully automated ear-based authentication system. The afore-
mentioned system employs a protocol in which the ROI is automatically
detected through deep learning, followed by feature extraction, template
matching and veri�cation. Due to time constraints, only the rank-1 sce-
nario is investigated.

It is important to note that this investigation is based on the assumption
that only one positive sample is available for each individual enrolled into
the system. The aforementioned single sample therefore serves as a reference
sample for the corresponding individual during template matching. Each of
the experiments employs k-fold cross-validation in order to gauge the pro�-
ciency of the proposed systems in an unbiased way.

6.3.1 Experiment 1: Semi-automated ear-based authen-

tication

In this section an experimental protocol is outlined for the purpose of evaluat-
ing the pro�ciency of the proposed semi-automated ear-based authentication
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system, after the ROI has been manually speci�ed.

Recall that the AMI ear dataset contains ears that belong to 100 di�erent
individuals. For each individual in the AMI ear dataset, only four (of the
available seven) images are considered for the experiments outlined in this
chapter. For each individual, three ear images, that is the images referred to
as FRONT, UP and DOWN, are employed for evaluation purposes, while one
ear image, that is the image referred to as ZOOM, is used as a template or
reference sample for ranking purposes. A total number of 300 images (75%)
are therefore used for evaluation purposes within the context of the current
experiment, while 100 images (25%) are used for ranking purposes. The ears
referred to as BACK, RIGHT and LEFT are not considered for experimental
purposes in this thesis since it is presumed that the opposite side of the head
is supported by (for example) a wall, which does not allow for the head to
be tilted towards or away from the camera. The scope of this thesis is also
restricted to the evaluation of right ears as outlined in Section 1.2.

Recall that the IIT Delhi ear dataset contains ears that belong to 125
di�erent individuals. For each individual in the IIT Delhi ear dataset, two
ear images are used for evaluation purposes within the context of the current
experiment, while one ear image is used as a template or reference sample
for ranking purposes.

As mentioned previously, the current experiment is dichotomized into
Experiment 1A and Experiment 1B.

Experiment 1A

In this sub-experiment a questioned ear is matched to a reference sample that
is known to belong to the claimed individual, as well as to templates that
belong to other so-called ranking individuals. The questioned ear is accepted
as authentic if and only if the reference ear has a ranking of one. Within
the context of this sub-experiment both of the ear datasets considered in
this study are partitioned into two sets based on the individuals that are
employed for evaluation and ranking purposes.

Within the context of the AMI ear database, a 100-fold cross-validation
procedure is conducted as conceptualised in Figure 6.5. For each fold, three
positive samples (⊕) belonging to a single claimed individual and 150 neg-
ative samples (	) belonging to 50 other individuals are employed for evalu-
ation purposes, while 49 templates belonging to 49 ranking individuals and
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one reference sample belonging to the claimed individual are used for ranking
purposes.

For a speci�c fold, 2550-fold cross-validation is also conducted across
the evaluation individuals. For the �rst 50 of these sub-folds, the claimed
individual (⊕) is kept �xed, while the 50 other individuals (	) iteratively
provide negative evaluation samples (see Figure 6.6). For the next 50 sub-
folds, the claimed individual (⊕) is moved one place towards the left and
again kept �xed, after which the process is repeated. In this way it is ensured
that the data is balanced, in the sense that an equal number of positive and
negative samples are evaluated.

49 50 1

Fold 1 Ranking individuals

Evaluation individuals

48 50 11

Fold 2

47 250 1

Fold 3

501 49

Fold 100 Ranking individuals

Figure 6.5: Conceptualisation of the proposed data partitioning protocol for
the AMI ear dataset within the context of Experiment 1A. Within each
fold, 49 templates (that is the images referred to as ZOOM) associated
with 49 ranking individuals constitute the ranking set (dark gray), while
three images (that is the images referred to as FRONT, UP and DOWN) as-
sociated with each of the respective 51 evaluation individuals constitute the
evaluation set (light gray). One of the aforementioned evaluation individuals
(⊕) constitutes the claimed individual. Technically, one image (that is the
image referred to as ZOOM) associated with the claimed individual is also
employed for ranking purposes.

A similar 125-fold cross-validation protocol is employed within the context
of the IIT Delhi ear dataset as conceptualised in Figure 6.7. For each fold,
the sub-folds for the evaluation individuals are speci�ed in a similar way
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than is the case for Figure 6.6, except for the fact that the total number of
sub-folds is 5700.

49 1 1

Sub-fold 1

Evaluation individuals
48 1 11

Sub-fold 2

47 11 2

Sub-fold 3

49 11

Sub-fold 50

Figure 6.6: Conceptualisation of the proposed data partitioning protocol for
the evaluation individuals, within the context of Experiment 1A and the
AMI ear dataset. For the subsequent sub-folds (not shown), the claimed
individual (⊕) occupy other positions.

Experiment 1B:

In this sub-experiment, the system is rendered more �exible such that a
questioned ear is accepted when it has a ranking that is better than or equal to
a very speci�c optimal ranking, which may be greater than one. This optimal
ranking is empirically determined by employing a suitable data partitioning
protocol. Within the context of this sub-experiment both of the ear datasets
considered in this study are partitioned into a ranking set, an optimisation
set and an evaluation set. The aforementioned data partitioning and cross
validation protocol is conceptualised in Figures 6.8 and 6.9 for the AMI ear
dataset and IIT Delhi ear dataset respectively. For each fold, the sub-folds
within the context of the optimisation and evaluation individuals are de�ned
according to a similar protocol than the one conceptualised in Figure 6.6.
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49 75 1

Fold 1 Ranking individuals

Evaluation individuals

48 75 11

Fold 2

47 275 1

Fold 3

751 49

Fold 125 Ranking individuals

Figure 6.7: Conceptualisation of the proposed data partitioning protocol
for the IIT Delhi ear dataset within the context of Experiment 1A. Within
each fold, templates (that is the �rst ear for each individual) associated
with 49 ranking individuals constitute the ranking set (dark gray), while two
images (that is the second and the third ears) associated with each of the 76
respective evaluation individuals constitute the evaluation set (light gray).
One of the aforementioned evaluation individuals constitutes the claimed
individual. Technically, one image (that is the �rst image) associated with
the claimed individual is also employed for ranking purposes.

The proposed protocol for Experiment 1B is now described in more de-
tail:
As is the case for Experiment 1A, a 100-fold and 125-fold cross validation
procedure are conducted for the AMI and IIT ear databases respectively.
For a speci�c fold, cross-validation is conducted across the respective opti-
misation individuals according to the protocol conceptualised in Figure 6.6.
The estimated optimal ranking based on both the average error rate (AER)
and the equal error rate (EER), as de�ned in Table 6.1, is then employed to
authenticate the ears associated with the evaluation individuals. For a spe-
ci�c fold, cross-validation is again conducted across the respective evaluation
individuals using the protocol conceptualised in Figure 6.6.
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49 25 251

Fold 1 Ranking individuals

Optimisation individuals Evaluation individuals
48 25 1 25 1

Fold 2

47 25 1 25 2

Fold 3

Figure 6.8: Conceptualisation of the �rst three (out of a total of 100) folds of
the proposed data partitioning protocol for the AMI ear dataset within the
context of Experiment 1B.

49 50 251

Fold 1 Ranking individuals

Optimisation individuals Evaluation individuals
48 50 1 25 1

Fold 2

47 50 1 25 2

Fold 3

Figure 6.9: Conceptualisation of the �rst three (out of a total of 125) folds of
the proposed data partitioning protocol for the IIT Delhi ear dataset within
the context of Experiment 1B.

6.3.2 Experiment 2: Automated ROI detection

In this section an experimental protocol is proposed to gauge the pro�ciency
of the proposed convolutional neural network (CNN)-based automatic ROI
detection algorithm. The manually selected (speci�ed) ROI serves as a
ground truth for evaluating the proposed automated CNN-based ROI de-
tection protocol. For each dataset, ear images from di�erent individuals are
used for training, validation and testing purposes. The output of the CNN-
based algorithm is compared to the manually selected ROIs for the purpose
of evaluating the proposed segmentation protocol. The pixels that are cor-
rectly classi�ed as part of the earlobe are referred to as true positives, while

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. EXPERIMENTS 83

those correctly classi�ed as part of the background are referred to as true
negatives. False positives constitute those pixels that are erroneously clas-
si�ed as part of the earlobe, while the pixels that are erroneously classi�ed
as part of the background are referred to as false negatives. For both of the
datasets, 50% of the data is assigned to the training set, while 25% is assigned
to the validation set and 25% to the test set (see Figure 6.10). A 4-fold cross
validation experimental protocol is conducted on both of the AMI and IIT
Delhi ear datasets.

50% 25% 25%

Fold 1 Training individuals Validation individuals Testing individuals

25% 25% 25% 25%

Fold 2 Training individuals Training individualsValidation individuals Testing individuals

25% 25% 50%

Fold 3 Validation individuals Training individualsTesting individuals

25% 50% 25%

Fold 4 Validation individualsTraining individualsTesting individuals

Figure 6.10: Conceptualisation of the proposed data partitioning protocol
implemented for Experiment 2.

6.3.3 Experiment 3: Fully automated ear-based authen-

tication

In this section an experimental protocol is proposed to evaluate the pro�-
ciency of the proposed fully automated ear-based biometric authentication
system, where a suitable ROI is automatically detected using an appropriate
CNN. For this experiment a questioned ear is accepted as authentic if and
only if the reference ear has a ranking of one. Within the context of this
experiment both of the ear datasets considered in this study are partitioned
into four subsets, where each subset contains images associated with di�er-
ent individuals that is a training set, a validation set, a ranking set and an
evaluation set.
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6.4 Results

In this section a comprehensive analysis of the results for the conducted ex-
periments relating to the semi-automated system in which the ROI is manu-
ally selected for each questioned ear, the automated ROI detection algorithm,
and the fully automated end-to-end ear-based biometric authentication sys-
tem are discussed. These results are categorised according to the aforemen-
tioned experimental protocols. The quanti�able assessment of the pro�ciency
of the proposed systems are based on the following:

• The number of true positives (TP), that is the number of positive
samples correctly accepted;

• The number of false positives (FP), that is the number of negative
samples incorrectly accepted;

• The number of false negatives (FN), that is the number of positive
samples incorrectly rejected;

• The number of true negatives (TN), that is the number of negative
samples correctly rejected.

The relevant statistical performance measures employed in this thesis for the
purpose of quantifying the pro�ciency of the proposed systems are listed and
de�ned in Table 6.1

Performance measure De�nition

False acceptance rate (FAR) FP/(FP+TN)
False rejection rate (FRR) FN/(FN+TP)
Average error rate (AER) (FAR+FRR)/2
Equal error rate (ERR) FAR ≈ FRR

Precision (PRE) TP/(TP+FP)
Recall (REC) TP/(TP+FN)

Accuracy (ACC) (TP+TN)/(TP+FN+FP+TN)
F1 score 2 * PRE * REC/(PRE+REC)

Table 6.1: The statistical performance measures employed in this thesis.
These performance measures are often expressed as percentages.
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6.4.1 Semi-automated ear-based authentication

Rank-1 scenario: In this subsection the experimental protocol for Experi-
ment 1A, as outlined in Section 6.3.1, is implemented and analysed. Recall
that according to this protocol the ROI is manually speci�ed and a ques-
tioned ear is only accepted when it has a ranking of one. The results are
presented in Table 6.2.

Performance measure AMI ear dataset (%) IIT Delhi ear dataset (%)

FAR 0.04 0.18
FRR 4.76 13.00
AER 2.40 6.59
PRE 94.65 87.58
REC 95.24 87.00

Table 6.2: The results for the proposed semi-automated ear-based authen-
tication system within the context of the rank-1 scenario for the AMI and
IIT Delhi ear datasets. These results constitute averages across the relevant
folds according to the protocol outlined for Experiment 1A.

From the results presented in Table 6.2 it is clear that the proposed
systems are more pro�cient in the case of the AMI ear database, presumably
due to the fact that these images have a higher resolution than those in the
IIT Delhi ear database. It is furthermore evident that the rank-1 scenario, for
which the FARs are relatively low and the FRRs are relatively high, renders
the system very strict. This can be remedied by empirically determining an
optimal (more lenient) ranking criterion as will be investigated and analysed
in the next paragraph.

Optimal ranking scenario: In this subsection the experimental pro-
tocol for Experiment 1B, as outlined in Section 6.3.1, is implemented and
analysed. Recall that according to this protocol the ROI is manually spec-
i�ed and a questioned ear is accepted when it has a ranking that is better
than or equal to an optimal ranking. The AER and EER were investigated
as optimisation criteria for selecting the optimal ranking, and its was found
that (in general) the same optimal ranking is inferred irrespective of the cri-
terion employed. The optimisation protocol for the AMI and IIT Delhi ear
datasets is quantitatively illustrated in Figures 6.11 and 6.12 respectively.
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In the aforementioned �gures the average FAR and FRR are plotted as a
function of the ranking across all folds (and sub-folds) by only considering
the optimisation individuals.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

FAR

FRR

Error
rate
(%)

Ranking

ERR

Figure 6.11: The average FAR and FRR as functions of the ranking across all
folds (and sub-folds) by only considering the optimisation individuals within
the context of the AMI ear dataset. The EER (and AER) correspond to an
optimal ranking of 5. All of the ear images in the evaluation sets that has a
ranking of 5 or better will therefore be accepted.

From Figures 6.11 and 6.12 it is therefore clear that based on the optimi-
sation sets across all folds (on average) questioned ear images with rankings
of 5 (or better) and 7 (or better) should be accepted within the context of
the AMI and IIT Delhi ear datasets respectively in order to expect a low
AER, as well as a similar FAR and FRR. When the aforementioned optimal
rankings are imposed on the respective evaluation sets for the AMI and IIT
Delhi ear datasets respectively the average performance metrics (across all
folds) listed in Tables 6.3 and 6.4 are obtained. It should be noted that
di�erent optimal rankings may be imposed for di�erent folds, but this was
not investigated in this thesis due to time constraints. This being said, it is
however important to note that the individual optimal rankings for di�erent
folds are very consistent.
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Figure 6.12: The average FAR and FRR as functions of the ranking across all
folds (and sub-folds) by only considering the optimisation individuals within
the context of the IIT Delhi ear dataset. The EER (and AER) correspond
to an optimal ranking of 7. All of the ear images in the evaluation sets that
has a ranking of 7 or better will therefore be accepted.

Performance measure Rank-5 (%)

FAR 2.74
FRR 1.08
AER 1.91
PRE 70.24
REC 98.92

Table 6.3: The results for the proposed semi-automated ear-based authenti-
cation system within the context of the AMI ear database and an optimal
ranking of 5. These performance evaluation measures constitute average per-
centages across all of the folds and only involve evaluation individuals. Only
questioned images with a ranking of 5 or better are accepted.

When the results in Tables 6.3 and 6.4 are compared to those in Table 6.2
it is clear that the AER can be decreased by also allowing for ranking criteria
other than rank-1.
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Performance measure Rank-7 (%)

FAR 6.94
FRR 4.20
AER 5.07
PRE 60.99
REC 94.06

Table 6.4: The results for proposed automated ear authentication system
within the context of the IIT Delhi ear database and an optimal ranking
of 7. These performance evaluation measures constitute average percentages
across all of the folds and only involve evaluation individuals. Only ques-
tioned images with a ranking of 7 or better are accepted.

6.4.2 Automated ROI detection system

In this subsection the pro�ciency of the proposed automatic ROI detection
algorithm is investigated and analysed. The pro�ciency of the proposed
system is analysed by comparing the manually speci�ed ROIs (which serve
as a ground truth for the proposed system) and the automatically detected
ROIs (the output of the proposed CNN). In Tables 6.5 and 6.6 the ROI
detection results are summarised for the AMI and IIT Delhi ear datasets
respectively. The precision, recall, accuracy and F1 score are employed as
performance evaluation measures.

From the results presented in Tables 6.5 and 6.6 it is clear that the pro-
posed ROI detection protocol is more pro�cient in the case of the AMI ear
database, again presumably due to the fact that these images have a higher
resolution than those in the IIT Delhi ear database.

In order to visually compare the manually selected and automatically
detected ROIs, a few examples within the context of the AMI and IIT Delhi
ear databases are presented in Figures 6.13 and 6.14 respectively. The true
positive, true negative, false positive and false negative pixels are depicted
in white, black, green and pink respectively.
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Performance measure ROI detection (%)

PRE 80.30
REC 90.88
ACC 91.01
F1 87.66

Table 6.5: The results for the proposed automatic ROI detection protocol
within the context of the AMI ear dataset. The tabulated results constitute
average percentages (across all folds) of the employed performance evaluation
measures.

Performance measure ROI detection (%)

PRE 70.26
REC 81.86
ACC 87.93
F1 73.40

Table 6.6: The results for the proposed automatic ROI detection protocol
within the context of the IIT Delhi ear dataset. The tabulated results con-
stitute average percentages (across all folds) of the employed performance
evaluation measures.

6.4.3 Fully automated ear-based authentication

In this subsection the results for the proposed fully automated ear-based
authentication system are presented. This system employs a protocol in
which the ROI is automatically detected through deep learning, followed
by feature extraction, feature matching, and veri�cation. Note that only
the rank-1 scenario was investigated within this context. The results are
presented in Table 6.7.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Examples of ear images from the AMI ear dataset for the pur-
pose of comparing the manually selected (ground truth) and (CNN-based)
automatically detected ROIs. The true positive, true negative, false posi-
tive and false negative pixels are depicted in white, black, green and pink
respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Examples of ear images from the IIT Delhi ear dataset for
the purpose of comparing the manually selected (ground truth) and (CNN-
based) automatically detected ROIs. The true positive, true negative, false
positive and false negative pixels are depicted in white, black, green and pink
respectively.
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Performance measure AMI ear dataset (%) IIT Delhi ear dataset (%)

FAR 1.74 3.45
FRR 23.18 42.65
AER 12.46 23.05
PRE 76.52 56.77
REC 76.82 57.35

Table 6.7: The results for the proposed fully automated ear-based authenti-
cation system within the context of the rank-1 scenario for the AMI and IIT
Delhi ear datasets. These results constitute average percentages (across all
folds) of the employed performance evaluation measures.

Since the rank-1 scenario within the context of the proposed fully auto-
mated system is very strict and is therefore characterised by a low FAR and a
high FRR, it is reasonable to expect similar improvements to those reported
for the semi-automated system discussed in Section 6.3.1, when an optimal
(more lenient) ranking is estimated and imposed within the current context.
This was not investigated in this thesis due to time constraints.

6.5 Software and hardware employed

The systems proposed in this thesis were implemented in MATLABTM (ver-
sions R2017b and R2018a). The following toolboxes were employed:

• Image Processing ToolboxTM (version R2017b);

• Neural Network ToolboxTM (version R2018a); and

• Statistics and Machine Learning ToolboxTM (version R2018a).

The algorithms were implemented on an 8th Generation Intel R© CoreTM i5
workstation with 8 GB RAM.

6.6 Discussion

It was demonstrated that in scenarios where the ROI is manually speci�ed
and a questioned ear is only accepted when it has a ranking of one, AERs
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of 2.4% and 6.59% is achievable within the context of the AMI and IIT Delhi
ear databases. When all questioned ears with a ranking equal to or better
than an estimated optimal ranking are accepted, the aforementioned AERs
can be reduced to 1.91% and 5.07% respectively. The discrepancy in the
pro�ciency for the two datasets in question may be attributed to the quality
(resolution) of the images.

Accuracies of 91% and 88% are reported for the proposed CNN-based
ROI detection protocol within the context of the AMI and IIT Delhi ear
databases respectively.

As expected, the pro�ciency of the proposed fully automated end-to-
end system, in which the ROI is automatically detected, followed by feature
extraction, feature matching, and rank-1-based veri�cation, is signi�cantly
lower than that of the corresponding rank-1-based semi-automated system,
in which the ROI is manually speci�ed. For the fully automated system,
AERs of 12.8% and 23.05% are reported within the context of the AMI and
IIT Delhi ear databases respectively. These results may be improved upon
by also considering optimal rankings, which do not necessarily coincide with
a ranking of one.

This research provided valuable insight into the problem of ear-based
biometric authentication and opened up various avenues for further research.
The above-mentioned topics will be discussed in more detail in the �nal
chapter.
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Conclusion and future work

7.1 Conclusion

In this thesis novel ear-based authentication systems were proposed. Firstly,
a segmentation protocol which facilitates the automatic detection of a re-
gion of interest (ROI) that encloses the entire ear shell was developed. The
aforementioned protocol, which employs a convolutional neural network, is
followed by morphological post-processing. The Canny edge detector was
subsequently applied to �nd prominent contours associated with the ear shell.
This was followed by the extraction of features from the aforementioned con-
tours through the application of the discrete Radon transform (DRT). Appro-
priate feature normalisation techniques were applied to ensure translation,
scale and rotation invariance across all feature sets. The di�erence between
(dissimilarity of) two feature sets was quanti�ed by the average Euclidean
distance between the corresponding feature vectors. A ranking veri�er was
constructed for veri�cation purposes by computing the dissimilarity between
the questioned ear and a reference ear, as well as the respective dissimilarities
between the questioned ear and those belonging to ranking individuals.

The pro�ciency of the proposed systems was estimated by considering
two datasets that is (1) the Mathematical Analysis of Images (AMI) ear
dataset and (2) the Indian Institute of Technology (IIT) Delhi ear dataset.
Within the context of the proposed semi-automated ear-based authentica-
tion system in which the ROI is manually speci�ed, the performance of the
aforementioned system was demonstrated to be comparable to those of ex-
isting systems for a rank-1 scenario. It was furthermore demonstrated that

94
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the pro�ciency may be improved upon through the estimation of an optimal
ranking by considering a separate set of so-called optimisation individuals.
The pro�ciency of the proposed CNN-based ROI-detection protocol within
the context of ear-based biometric authentication was also demonstrated to
be comparable to those of existing systems.

7.2 Future work

Although the research conducted in this thesis provided valuable insight into
numerous aspects relating to ear-based biometric authentication and deep
learning, the following avenues have not been pursued due to time constraints
and should therefore represent interesting future work:

(1) Within the context of the fully automated system developed in this the-
sis, only the ROI-detection protocol (that is the �rst part of the system)
employs a deep learning-based approach. The remainder (second part) of
the aforementioned system relies on the extraction of manually tailored
features, template matching, and a ranking veri�er. An investigation
into the development of an end-to-end deep learning-based approach, or
the utilisation of another machine learning-based approach, like a sup-
port vector machine, for the second part of the fully automated system
developed in this thesis should be very interesting.

(2) The research conducted in this thesis was restricted to the authentica-
tion of ears that are only allowed to rotate within a plane parallel to the
plane of the camera. An investigation into the feasibility of appropriate
a�ne transformations, amongst other things, for the purpose of authen-
ticating ears that are also allowed to rotate out of the aforementioned
plane, should be of value. Ways for dealing with the inevitable resulting
occlusions may also be investigated.

(3) Only two datasets were considered in this research. As discussed in
Chapter 2, many other datasets may be publicly available and used for
experimental purposes.

(4) A more in-depth investigation into the very speci�c problem cases that
negatively impacted the reported pro�ciency of the systems developed in
this thesis should be conducted.
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(5) Within the context of the fully automated system developed in this thesis,
only the rank-1 scenario was investigated. This (very strict) scenario
resulted in a low false acceptance rate (FAR) and a high false rejection
rate (FRR). Within the context of the semi-automated system developed
in this thesis, it was demonstrated that the average error rate (AER) can
be decreased signi�cantly by considering an optimal ranking scenario
based on either the equal error rate (EER) or the AER. This was not
investigated for the fully automated system developed in this thesis and
therefore constitutes viable future research.

The objectives of this research, as outlined in Section 1.3, have therefore been
achieved.
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