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Abstract

The study of similarity score calculation methods for

minutia-based �ngerprint matching algorithms

A.J. de Kock

Department of Mathematical Sciences, Division of Applied Mathematics,

Stellenbosch University,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc

December 2016

This study aims to establish guidelines for calculating the similarity score
between two minutia point representations of �ngerprints for minutia-based
�ngerprint matching. Existing research does not provide clear guidelines on
how to calculate the similarity score between two minutia point representa-
tions and the reported performance of most existing algorithms include those
comparisons for which the point matching algorithm failed. This study there-
fore compares the performance of existing similarity score calculation methods
after the erroneous comparisons from the point matching algorithm have been
removed. It furthermore investigates in which way and to what extent these
methods are a�ected by intra-class variations and inter-class similarities. The
results indicate that none of the existing similarity score calculation methods
is superior to all the others when implemented on the FVC2002 and FVC2004
�ngerprint databases. This study also proposes an improved local descriptor
for local similarity score calculation and investigates whether the combination
of di�erent types of similarity score calculation methods better addresses intra-
class variations and inter-class similarities and therefore improves pro�ciency.
The results indicate that similarity score calculation methods that address both
global and local inter-class similarities, and are robust to intra-class variations,
perform better across multiple databases. Even though this study concludes
that the combination of di�erent types of similarity score calculation methods
generally improves pro�ciency, high levels of noise and nonlinear distortion
still adversely a�ect performance. Future work should therefore focus on im-
proving the stages preceding the similarity score calculation stage, i.e. minutia
extraction and point matching.
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Uittreksel

'n Study vergelyking waarde berekeings vir minutia

gebaseerde vingerafdruk vergelyking

(�The study of matching score calculation methods for minutia-based �ngerprint

matching algorithms�)

A.J. de Kock

Departement Wiskundige Wetenskappe, Afdeling Toegepaste Wiskunde,

Universiteit Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc

Desember 2016

Hierdie studie poog om riglyne vir die berekening van die eendersheid-
telling tussen twee minutia-puntvoorstellings van vingerafdrukke vir minutia-
gebaseerde vingerafdrukpassing daar te stel. Bestaande navorsing verskaf nie
duidelike riglyne vir hoe om die eendersheid-telling tussen twee minutia punt-
voorstellings te bereken nie en die gerapporteerde prestasie vir die meeste
bestaande algoritmes sluit daardie vergelykings waarvoor die puntpassings-
algoritme misluk in. Hierdie studie vergelyk dus die prestasie van bestaande
eendersheid-telling berekeningsmetodes nadat die foutiewe vergelykings van die
puntpassingsalgoritme verwyder is. Dit ondersoek ook op watter manier en in
watter mate hierdie metodes deur intra-klas variasies en inter-klas ooreenstem-
mings beïnvloed word. Die resultate dui daarop dat geen van die bestaande
eendersheid-telling berekeningsmetodes better as al die ander vaar wanneer
dit op die FVC2002 en FVC2004 vingerafdruk databasisse geïmplementeer
word nie. Hierdie studie stel ook 'n verbeterde lokale beskrywer vir lokale
eendersheid-telling berekening voor en ondersoek of die kombinasie van verskil-
lende eendersheid-telling berekeingsmetodes intra-klas variasies and inter-klas
ooreenstemmings beter aanspreek en dus die prestasie verhoog. Die resultate
dui daarop dat eendersheid-telling berekeningsmetodes wat beide globale en
lokale inter-klas ooreenstemmings aanspreek, en onsensitief ten opsigte van
intra-klas variasies is, beter oor veelvuldige databasisse vaar. Nieteenstaande
die feit dat hierdie studie die gevolgtrekking maak dat die kombinasie van ver-
skillende tipes van eendersheid-telling berekeningsmetodes die prestasie in die
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UITTREKSEL iv

algemeen verhoog, word die prestasie steeds deur hoë ruisvlakke en nie-lineêre
vervorming verswak. Toekomstige werk moet dus op die verbetering van die
stadia wat die eerdersheid-telling berekeningstadium voorafgaan fokus, m.a.w.
minutia-onttrekking en puntpassing.
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Chapter 1

Introduction

1.1 Background

The ease with which the bar-coded green South African national I.D. book
can be forged has led to many instances of identity theft which are costing
South African businesses, especially within the retail sector, millions of Rands
in lost revenue. The response from the South African government to the
threat posed by identity theft to businesses within the country, and therefore
the economy as a whole, has been to replace the bar-coded green I.D. book
with a smart-card based I.D. The smart-card based I.D. has in addition to
physical security features, like holograms, laser-engraved biographic details
and a photo of the I.D. holder for tamper proo�ng, also a representation of
the holder's �ngerprint stored in electronic form on the card for automated
identity veri�cation through �ngerprint recognition.

Automated identity veri�cation using �ngerprints has become accepted as a
more reliable means of con�rming identity due to the uniqueness of �ngerprints
(Jain et al., 2002) and the maturity of the technology. This is performed by
comparing the �ngerprint of one of the �ngers of a person claiming an identity
to the �ngerprint of a similar �nger that is linked to said identity, e.g. the
�ngerprint stored on the smart-card based I.D. This comparison is performed
using a �ngerprint matching algorithm, which calculates a similarity score
which is then compared to a similarity score threshold1 in order to decide
whether the �ngerprint was captured from the same �nger. For example, a
person will be considered to be the true owner of an identity if the comparison
of his/her �ngerprint with that stored against the claimed identity results in
a similarity score value of 75, given that the similarity score threshold is 70.

There are di�erent approaches to comparing �ngerprints, that is �ngerprint
matching algorithms, which can broadly be grouped into (1) image-based and

1The similarity score threshold is the minimum similarity score value that is expected

from a comparison of �ngerprints of the same �nger, assuming that low similarity score

values are assigned to �ngerprints captured from di�erent �ngers.

1
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CHAPTER 1. INTRODUCTION 2

(2) feature-based matching algorithms. Feature-based matching algorithms can
be further sub-categorised into minutia-based, non-minutia-based, and hybrid
matching algorithms, with minutia-based matching algorithms being the most
popular, mainly because they are both e�cient and robust (Wen et al., 2013).

Figure 1.1: Examples of the location and orientation of a bifurcation and ridge
ending minutia point on a �ngerprint image.

Minutia-based matching algorithms compare �ngerprints in an indirect way
by comparing the locations and other characterising information of the minutia
points on the �ngerprints. Minutia points are the locations on a �ngerprint
where a ridge, which is the raised section of the skin on the inner surface of
the hand (represented by dark lines on the �ngerprint image in Figure 1.1),
either ends or divides into two separate ridges. There are therefore two types
of minutia points, a ridge ending and a ridge bifurcation, at the location where
a ridge either ends or separates. Minutia points can therefore be characterised
by their type and the orientation of the ridge(s) that they are linked to, as
illustrated in Figure 1.1.

Two �ngerprints are compared through a minutia-based matching algo-
rithm (see Figure 1.2) by implementing the following three steps.

� Step 1 involves the extraction of minutia points from the �ngerprints that
are being compared.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

Figure 1.2: The three steps in minutia-based �ngerprint matching: (1) minutia
extraction, (2) point matching, and (3) similarity score calculation.

� Step 2 involves the mapping of the minutia points from one �nger that
constitute a similar pattern than those minutia points on another �nger;
a process that is known as minutia point matching (or simply point

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 4

matching), the outcome of which is a list of mapped or paired minutia
points.

� Step 3 involves the calculation of a similarity score based on the paired
minutia points.

The term minutia-based matching algorithm will however be used to refer to
both steps 2 and 3 listed above for the remainder of this thesis, as is the case
in most of the current literature.

1.2 Problem statement

The goal of a matching algorithm is to calculate a similarity score that can be
used to accurately tell impostor and genuine comparisons apart by assigning
high similarity score values to genuine comparisons and low values to impostor
comparisons. Genuine and impostor comparisons constitute comparisons of
�ngerprints belonging to the same and di�erent �ngers, respectively.

An obvious similarity score, which is mostly used by �ngerprint experts,
is the number of minutia points that are matched or paired. This serves as a
good similarity score whenever the minutia points are matched or paired by a
�ngerprint expert using not only their relative position, but also the �ngerprint
images to guide the matching process. However, in the absence of �ngerprint
images to guide the process, as happens to be the case for minutia-based
matching algorithms (the subject of the present work), minutia points that
form similar patterns on �ngerprints of di�erent �ngers may be erroneously
paired, so that the number of paired minutia points (for this case) is compara-
ble to the number of minutia points that form similar patterns on �ngerprints
of the same �nger. This is due to intra-class variations and inter-class simi-
larities, which constitute the di�erences and similarities between �ngerprints,
or minutia points from �ngerprints, of the same �nger and di�erent �ngers,
respectively.

Intra-class variations that are typically encountered when comparing minu-
tia points extracted from �ngerprints of the same �nger are shown in Figure 1.3
where four plots, each of minutia points extracted from �ngerprints of the
same �nger are overlaid in such a manner that matching minutia points (in-
side square boxes) are aligned. When feature extraction errors are ignored, the
di�erent types of intra-class variations as illustrated in the plots of Figure 1.3
are mainly due to the fact that a �nger is generally impressed di�erently on
a �ngerprint scanner each time a �ngerprint is captured. In addition to this,
the skin condition varies. A �nger is generally not placed at exactly the same
location, with the same orientation, and impressed with the same pressure
on a �ngerprint scanner each time a �ngerprint is captured. The amount of
pressure with which a �nger is impressed on a �ngerprint scanner has an e�ect

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 5

(a)
(b)

(c) (d)

Figure 1.3: Di�erent types of intra-class variations: (a) A scenario with ideal
genuine comparisons with little variation between the two sets being compared.
(b) A scenario where the variation is within the captured region, which leads
to a small common region. (c) A scenario where the one set (indicated in blue)
has many false minutia points which causes a large di�erence in the number of
minutia points in the overlap. (d) A scenario where the one set (indicated in
blue) has high levels of distortion in the top left corner which causes correctly
paired minutia points to have a large variation in location.
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CHAPTER 1. INTRODUCTION 6

on the thickness of the �ngerprint ridges, how the skin of the �nger stretches,
and the amount of skin that makes contact with the scanning surface.

� A �ngerprint image captured in such as way that the pressure with which
the �nger is impressed on a �ngerprint scanner is relatively high, will be
characterised by thick ridges, while the opposite is also true. Thick
ridges may touch one another, therefore creating ridge bifurcations on a
�ngerprint image that do not exist on the physical �nger.

� When �ngers are impressed on a �ngerprint scanner at di�erent pressures
the ridges will not align perfectly. This implies that the location of
corresponding minutia points may di�er.

� There is generally more skin detail on a �ngerprint when the pressure
with which a �nger is impressed on a �ngerprint scanner is high, while
the opposite is also true.

Skin details on �ngerprints that are captured by placing a �nger at di�erent
locations and with di�erent orientations on a �ngerprint scanner (coupled with
the factors listed above) will generally also be di�erent, resulting in some
�ngerprints having details that are not present in others. Lastly, the skin
condition, e.g. moisture levels, may be signi�cantly di�erent each time that
a �ngerprint is captured which has an e�ect on the clarity of the ridges. For
example, a �ngerprint captured from a dry �nger will be di�erent from that
captured from a wet �nger; a dry �nger generally has discontinuous ridges,
which means that the �ngerprint may have ridge endings that are not present
on the actual �nger.

Examples of inter-class similarities are shown in Figure 1.4 where two
plots, each showing minutia points extracted from �ngerprints of di�erent �n-
gers, are overlaid in such a manner that matching points extracted from the
�ngerprints (inside the square boxes) are aligned. Inter-class similarities such
as those depicted in Figure 1.4 (a) occur between �ngerprints with the same
ridge pattern � there are �ve di�erent ridge patterns in total. Examples of
�ngerprints showing each of these �ve ridge patterns (with labels) are shown
in Figure 1.5. Furthermore, in this work a distinction is made between global
inter-class similarity and local inter-class similarity, where:

1. global inter-class similarity is de�ned as a form of inter-class similar-
ity where many minutia points from �ngerprints of di�erent �ngers are
paired and a substantial overlap between the convex hulls of the minutia
points from each �ngerprint is observed such as those shown in Fig-
ure 1.4 (a); and

2. local inter-class similarity is de�ned as a form of inter-class similarity
where the minutia points from �ngerprints of di�erent �ngers are found
to form a similar pattern in such a way that a small overlap between
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(a) (b)

Figure 1.4: Illustration of global and local inter-class similarity between two
minutia sets from �ngerprints of di�erent �ngers. (a) Global inter-class simi-
larity results from impostor comparisons with a globally similar minutia point
structure, which causes many minutia points to fall within the tolerance box for
impostor comparisons. (b) Local inter-class similarity results from impostor
comparisons with a high similarity in the local minutia point structure.

the convex hulls of the minutia points from each �ngerprint is observed,
with most of the minutia points in the overlap paired, as shown in Fig-
ure 1.4 (b).

Therefore, using the number of paired (or matched) minutia points as a sim-
ilarity score will not meet the goal of being able to tell impostor and genuine
comparisons apart, especially when intra-class variations and inter-class simi-
larities are taken into account. However, the problem of calculating a similarity
score or quantifying the similarity between representations of minutia points
in �ngerprints has received inadequate attention in the literature, despite the
large number of minutia-based matching algorithms that have been published
to date; to such an extent that only half a page is dedicated to this topic in
the Handbook of Fingerprint Recognition by Maltoni et al. (2009). There is
therefore a need for an approach that can be used to quantify the similarity
between minutia points extracted from two �ngerprints in such a manner that
the goal of being able to tell impostor and genuine comparisons apart, are met,
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Figure 1.5: The �ve di�erent �ngerprint patterns.

while the above-mentioned inter-class similarities and intra-class variations are
still taken into account.

1.3 Objectives

The goal of this research is to develop guidelines that will contribute towards
the development of �ngerprint matching algorithms which are not based on
machine learning techniques. The emphasis is on the development of a simi-
larity score calculation method that may be used to tell impostor and genuine
comparisons apart.

The objectives of this research are therefore to:

� identify those methods employed in published minutia-based matching
algorithms that speci�cally quantify the similarity between minutia point
representations of �ngerprints;

� compare the pro�ciency of di�erent similarity score calculation methods
as proposed in the above-mentioned (identi�ed) publications in distin-
guishing impostor comparisons from genuine comparisons, taking both
inter-class similarities and intra-class variations into account; and

� interpret the results of the above-mentioned comparisons, therefore iden-
tifying the strengths and weaknesses of each method, and also formulat-
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ing guidelines that may be followed in calculating a similarity score that
is able to pro�ciently tell impostor and genuine comparisons apart, again
taking both inter-class similarities and intra-class variations into account.

The above-mentioned guidelines are then used to investigate two case stud-
ies, that aim to:

� determine whether improvements can be made to one or more of the
existing similarity score calculation methods when implemented by some
of the minutia-based matching algorithms being investigated; and

� investigate whether a combined similarity score as obtained by fusing
several di�erent similarity scores, each one using a di�erent approach,
will better meet the goal of pro�ciently telling impostor and genuine
comparisons apart.

1.4 Delineations and limitations

Only minutia-based matching algorithms that calculate a similarity score be-
tween minutia point representations of �ngerprints, using only the location
and ridge orientation as a descriptor for a minutia point, are considered as
part of the work presented in this thesis. This is due to the fact that minutia
quality, which indicates amongst other things the reliability of the minutia
point location and its ridge orientation, is usually added as a descriptor for
the minutia point in question. However, there is no consensus on how minu-
tia quality should be calculated and not all software programs for extracting
minutia points include minutia quality as a feature within its descriptor.

Only non-learning-based approaches for quantifying the similarity between
minutia point representations of �ngerprints are considered throughout this
study. This is mainly because of the fact that learning-based methods require
training, which may not be feasible for many applications, and the perfor-
mance of similarity scores calculated using these approaches will depend on
the representativeness of the training data.

This investigation only focuses on minutia-based matching algorithms that
the author is aware of and may not include all existing minutia-based matching
algorithms. The guidelines reported in this thesis are therefore by no means
comprehensive and only include those that are informed by the knowledge
gained from evaluating the performances of the similarity scores calculated,
using the matching algorithms that had been identi�ed.

This study only focuses on the similarity between minutia points extracted
from live scanned �ngerprints. The guidelines presented here may therefore
not generally apply to the similarity between latent �ngerprints. Latent �n-
gerprints are �ngerprints that have been lifted from di�erent surfaces at crime
scenes; the comparison of latent �ngerprints is a semi-automated process.
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1.5 Assumptions

The work presented in this thesis is based upon the following assumptions:

� no two people have �ngers with matching �ngerprints, including identical
twins (Tao and Veldhuis, 2013);

� the databases used in this study are su�ciently representative of typical
levels of intra-class variations and inter-class similarities for live scanned
�ngerprints submitted to a typical �ngerprint recognition application;
and

� there will always be at least three paired minutia points for all genuine
comparisons.

1.6 Summary of results

In the process of developing guidelines for calculating a similarity score for a
matching method, we considered the di�erent variations and similarities that
may occur in genuine and impostor comparisons. Additionally, we compared
di�erent existing similarity score calculation methods in order to establish
how the best methods are constructed and proposed improvements to some of
these methods. We also removed the comparisons for which the point matching
algorithm completely failed in order to determine whether existing error rates
are a result of said point matching algorithm or the similarity score calculation
method or both. We also analysed the problematic comparisons for existing
similarity score calculation methods in order to identify whether any of them
are sensitive to speci�c intra-class variations or inter-class similarities. Finally,
we combined di�erent similarity score calculation methods in order to establish
whether this may improve the performance of the individual methods. A
summary of the principal results from the above-mentioned investigation is
presented below.

� Not one of the existing similarity score calculation methods being com-
pared was shown to be superior to all the others when implemented on
the databases considered, since each method was sensitive to at least
one type of intra-class variation or a�ected by one type of inter-class
similarity.

� However, the implementation of similarity scores that combine the local
similarity with either the structural similarity or a percentage of paired
minutia points in order to address global inter-class similarity, and which
also use a penalization factor in order to address local inter-class simi-
larity, lead to a higher average accuracy across all the databases.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 11

� The assignment and calculation of the descriptor similarity between in-
dividual neighbouring minutia points, while considering the maximum
number of paired neighbouring minutia points, lead to a signi�cantly
higher accuracy when implemented on the FVC2004 �ngerprint databases
than was the case for the MCC-based local similarity. This improvement
is however not signi�cant when implemented on the FVC2002 �ngerprint
databases, but a better average accuracy is still reported when compared
to the MCC-based descriptor.

� The combination of the di�erent types of similarity score calculation
methods through a simple rule-based fusion method signi�cantly in-
creased the accuracy when implemented on the FVC2004 �ngerprint
databases. The improvement was however not signi�cant for the FVC2002
�ngerprint databases. The fusion-based method however preformed sig-
ni�cantly better when implemented on the FVC2002 �ngerprint databases
when compared to the best existing similarity score calculation method as
proposed by Cappelli et al. (2010b). A signi�cant improvement in pro�-
ciency was however not observed for the FVC2004 �ngerprint databases.

1.7 Signi�cance

The work presented in this thesis constitutes one of the very few works that
directly focuses on the calculation of the similarity score for the comparison of
minutia point representations of �ngerprints, as indicated by the fact that only
half a page is dedicated to this topic in the Handbook of Fingerprint Recog-
nition (Maltoni et al., 2009). This work results in the following contributions:

� it categorises the di�erent approaches to calculating similarity scores into
three groups;

� it de�nes the concepts of global inter-class similarity and local inter-
class similarity, in order to aid with the task of understanding how the
performance of similarity score calculation methods are a�ected by inter-
class similarities and intra-class variations;

� it explains why certain approaches to quantifying the similarity between
minutia point representations of �ngerprints perform better than others;
and

� it proposes an improved local descriptor for calculating the similarity
between two minutia points based on their local neighbourhoods in sce-
narios where high noise levels are present.
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1.8 Brief thesis overview

The remainder of this thesis consists of six chapters with Chapters 2, 3, and 4
focusing on the performance comparison of existing similarity score calculation
methods. Chapter 2 provides an overview of existing similarity score calcula-
tion methods. Chapter 3 explains the methodology followed, while Chapter 4
presents the results. Chapter 5 focuses on improving existing local similarity
score calculation methods and Chapter 6 veri�es whether the combination of
the three di�erent similarity score calculation methods identi�ed in Chapter 2
improves the performance of the individual methods. Chapter 7 presents some
�nal conclusions and discusses possible future work.
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Chapter 2

Literature review

2.1 Introduction

The �rst proposed similarity scores simply constituted the number of paired
minutia points between two �ngerprints. The Rule of Thumb by Locard (Neu-
mann et al., 2012) suggested that 12 paired minutia points between two �n-
gerprints, without any di�erences, establish identity beyond doubt. In 2009
the International Association for Identi�cation however stated that �no valid
basis exists for requiring that a predetermined minimum number of friction
ridge characteristics must be present in two impressions in order to establish
identity� (Neumann et al., 2012).

This chapter reviews methods utilized to calculate similarity scores and is
partitioned into two sections. The �rst section focuses on existing similarity
score calculation methods and discusses how these are a�ected by intra-class
variations and inter-class similarities. The second section demonstrates the
lack of existing research that focuses on the calculation of the similarity score
and discusses how this a�ects automated minutia-based matching. This chap-
ter therefore provides an overview on automated minutia-based similarity score
calculation methods and also highlights the problems associated with these
methods.

2.2 Similarity score calculation methods

Although di�erent similarity score calculation methods have been proposed, no
study was found that compares existing methods or categorises similar meth-
ods. This literature review therefore provides an overview of existing similar-
ity score calculation methods as depicted in Figure 2.1. The similarity score
calculation methods are categorised based on the features that they incorpo-
rate. The �rst group of methods is limited to the percentage of paired minutia
points in relation to either the maximum number of minutia points within the
overlapping region that can be paired or the total number of minutia points

13
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overall that can be paired. The second group considers the similarity between
paired minutia points and the similarity between di�erent minutia pairs based
on the spatial and orientation relations of the neighbouring minutia points or
neighbouring minutia point pairs.

Figure 2.1: Overview of existing similarity score calculation methods.

In this section these di�erent similarity score calculation methods are
grouped into three categories. Even though many di�erent ways for cate-
gorising these methods are possible (see Figure 2.1), it is clear that clusters
of these methods capture similar features and are therefore robust/sensitive
to the same type of intra-class variations and inter-class similarities. To sim-
plify the discussion, this study categorises similarity scores into the following
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three groups based on how they are calculated, as well as their sensitivity and
robustness to intra-class variations and inter-class similarities: (1) percentage
of paired minutia points, (2) local similarity score calculation methods, and (3)
structural similarity score calculation methods. The remainder of this section
elaborates on existing methods belonging to these three groups and outlines
their strengths and weaknesses.

2.2.1 Percentage of paired minutia points

The similarity score value for methods belonging to this group is calculated as
a percentage of the paired number of minutia points (with some variations).
Jea and Govindaraju (2005), as well as Medina-Pérez et al. (2012), calculate
the similarity between minutia points from two �ngerprints as a percentage of
the paired minutia points using the following formula,

S =
2.0Nm

NT +NQ

, (2.1)

where Nm denotes the number of paired minutia points, while NT and NQ

denote the number of minutia points in sets T and Q respectively. The simi-
larity score value calculated through this method very e�ectively distinguishes
between genuine and impostor comparisons in scenarios with low levels of
intra-class variations, but penalizes genuine comparisons with partial overlap
and/or noise. Furthermore, it fails to adequately capture the dissimilarity of
impostor comparisons with high levels of global inter-class similarity.

Both Bazen and Gerez (2003) and Fu et al. (2013) consider the number
of paired minutia points relative to the total number of minutia points in the
overlap as follows,

S =
2.0Nm

NTO +NQO

, (2.2)

where Nm again denotes the number of paired minutia points, while NTO and
NQO are the number of minutia points in the overlapping region of minutia sets
T and Q respectively. This method more accurately captures the dissimilarity
in cases of high levels of global inter-class similarity, but its performance is
adversely a�ected by noise. The main problem associated with this similarity
score calculation method lies in the fact that it generates high score values
for impostor comparisons with high levels of local inter-class similarity. In
these cases this similarity score calculation method fails to decrease the level
of certainty re�ected in the similarity score when the comparisons have a small
overlap.

Khanyile et al. (2014) and Jain et al. (2008) address the above-mentioned
problem by adding a penalization factor, P , to the similarity score in Equa-
tion 2.2. The penalization factor proposed by Khanyile et al. (2014) is based
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on the ratio of minutia points within the overlapping region for the two sets,

P =

(
NTO

NT

+
NQO

NQ

)
, (2.3)

while the penalization factor proposed by Jain et al. (2008) is based on the
number of paired minutia points,

P =

(
Nm

Nm + 8.0

)
. (2.4)

Both Equations 2.3 and 2.4 decrease the similarity score associated with im-
postor comparisons with high levels of local inter-class similarity, since they
are multiplied with the percentage of paired minutia points calculated through
Equation 2.2. The penalization factor proposed by Khanyile et al. (2014)
may however be adversely a�ected by two partial sets that completely overlap,
while the factor proposed by Jain et al. (2008) may be adversely a�ected by
signi�cant global inter-class similarity when there are relatively many paired
minutia points.

The similarity scores calculated using the methods in this group can be em-
ployed to accurately distinguish between genuine and impostor comparisons
with relatively low levels of inter-class similarity and intra-class variation. Fur-
thermore, the extra penalization factors proposed by Khanyile et al. (2014) and
Jain et al. (2008) may be able to deal with partial overlap and local inter-class
similarity to a certain degree. However, the similarity score values obtained
through methods in this group are highly sensitive to noise, while a limited
number of minutia points do not provide a su�ciently high resolution for these
methods, and may complicate the process of distinguishing between genuine
and impostor comparisons.

2.2.2 Local similarity score calculation methods

Local similarity within the context of this thesis is de�ned as a measure of the
similarity between two minutia points from di�erent �ngers based on the con-
�guration and features of neighbouring minutia points within a local region;
where neighbouring minutia points are either the n closest minutia points or
those minutia points falling within a �xed radius from the minutia point in
question. The similarity is calculated by comparing rotation and translation
invariant features of di�erent minutia points as derived from spatial and ori-
entation features of their neighbouring minutia points, which are known as
local descriptors. The local similarity score is the average local similarity value
associated with the paired minutia points.

The local similarity score has several advantages that result in local similar-
ity score calculation methods being useful for minutia-based matching. Firstly,
the local similarity measure is less a�ected by nonlinear distortion due to the
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Figure 2.2: With Mj and Mi neighbouring minutia points of Mk, most local
similarity calculation methods use the features depicted in this �gure to create
local descriptors and calculate the local similarity. The symbol d denotes the
Euclidean distance while β, δ and φ are angle di�erences within the range
[0, π].

fact that only a local region is considered (Bringer and Despiegel, 2010), which
is the main reason why this group was created in the �rst place. Furthermore,
it can be calculated without prior alignment because of the translation and
rotation invariance of the descriptors (Neumann et al., 2012). The extent to
which it is a�ected by noise and partial overlap however depends on the type
of descriptor that is used, the comparison technique and the number of paired
minutia points included in the calculation of the local similarity.

Many di�erent types of local descriptors may be used to calculate the local
similarity. However, only the following three descriptors, which are the most
commonly used, are presented for the purposes of this review: (1) the �xed
length descriptor, (2) the �xed radius descriptor, and (3) the Minutia Cylinder
Code (MCC) descriptor.

2.2.2.1 Fixed length descriptor

The �xed length or n-closest neighbouring descriptor has a �xed number of
features that are calculated using the characteristics of a �xed number of n-
closest neighbouring minutia points. This descriptor can only be considered
to calculate the local similarity as long as only a few neighbouring minutia
points are considered and the minutia point density is medium to high. The
features associated with the neighbouring minutia points are ordered, primarily
based on the Euclidean distance from the reference minutia points. Each
corresponding feature value in the two descriptors can be directly compared
to calculate the local similarity.

Jiang and Yau (2000) include this local similarity in their similarity score
calculation method by combining this similarity with the percentage of paired
minutia points in the overlapping region. They only consider the two closest
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neighbouring minutia points in order to determine the local similarity between
the two minutia points in question. They compute the local similarity (Slocal)
as follows,

Slocal(MkT ,Mk′
Q

) =

{
%− | Fk − Fk′ |, if | Fk − Fk′ |< %

0, otherwise
, (2.5)

where Fk is the local descriptor (feature vector) of reference minutia point
MkT with two neighbouring minutia points i and j in �ngerprint T , and Fk′
the local descriptor of reference minutia point Mk′

Q
with two neighbouring

minutia points i′ and j′ in �ngerprint Q, where

Fk = [dki, dkj, βki, βkj, δki, δkj, ηki, ηkj, tki, tkj] (2.6)

and
Fk′ = [dk′i′ , dk′j′ , βk′i′ , βk′j′ , δk′i′ , δk′j′ , ηk′i′ , ηk′j′ , tk′i′ , tk′j′ ] (2.7)

with the features dki, dkj, βki, βkj, δki, and δkj as depicted in Figure 2.2.
The features tki, tkj, tk′i′ and tk′j′ represent the di�erent types of minutia
point, while ηki, ηkj, ηk′i′ and ηk′j′ constitute the ridge count between two
di�erent neighbouring minutia points and the reference minutia point in both
descriptors. The ridge count is an image feature. Despite the fact that the type
of minutia point is deemed unreliable by Cappelli et al. (2010a), these eight
features (associated with t and η) are included to improve distinctiveness; the
algorithm may however still be relatively pro�cient without them. The symbol
% denotes an empirical threshold vector for the above-mentioned features.

The fact that the features associated with these descriptors are �rst or-
dered, and then compared in said order, causes said approaches to be highly
sensitive to noise and partial overlap (Liu and Mago, 2012; Feng, 2008). Fur-
thermore, the limited number of neighbouring minutia points included in these
descriptors may not be very distinctive in regions with a high minutia density.
Therefore, the �xed length local descriptor should be avoided when high noise
levels are present.

2.2.2.2 Fixed radius descriptor

The �xed radius local descriptor was created to address the noise sensitivity
associated with the �xed length local descriptor. The features of a �xed radius
local descriptor are based on the minutia points that lie within a �xed radius
of a reference minutia point. The length of this descriptor is therefore variable.
Fixed radius descriptors are compared by �rst pairing neighbouring minutia
points that lie within the �xed radius and then calculating the similarity be-
tween them using a number of di�erent approaches, including the percentage
of paired minutia points.

Jain et al. (2008) proposed using a local similarity between minutia sets by
employing a �xed radius descriptor. They apply thresholds on the di�erences
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between d, β and φ of neighbouring minutia points (as depicted in Figure 2.2)
in order to determine the number of paired neighbouring minutia points. The
following formula is then used to calculate the local similarity,

Slocal(MkT ,Mk′
Q

) =

(
Nnmk

+ 1

Nnmk
+Nnnk + 3

)(
Nnmk′

+ 1

Nnmk′
+Nnnk′

+ 3

)
, (2.8)

where Nnm is the number of paired neighbouring minutia points and Nnn the
number of unpaired neighbouring minutia points in the overlapping region
between the regions surrounding minutia points MkT and Mk′

Q
associated with

minutia sets T and Q respectively.
The local similarity calculated through a �xed radius local descriptor is

more robust with respect noise than is the case for a �xed length local descrip-
tor, but this robustness has a few adverse consequences. Firstly, the calculation
of the local similarity is more complex (Cappelli et al., 2010a). Secondly, the
local similarity may be a�ected by noise or density variations within the region
when the similarity is calculated as a percentage of paired neighbouring minu-
tia points. Thirdly, the �xed radius regions may cause border errors when
a neighbouring minutia point is included in one descriptor, while the corre-
sponding neighbouring minutia point in another descriptor falls outside said
radius (Feng, 2008).

The size of the �xed radius descriptor may have a signi�cant impact on the
accuracy of the system. This is due to the fact that too small descriptors are
not signi�cantly distinctive, while too large descriptors are adversely a�ected
by nonlinear distortion and border errors. Fu and Feng (2015) illustrate this
relation through a plot of the EER against the radius of the local descriptor
and showed that the minimum EER for their local similarity is achieved at
approximately a radius of 90 pixels. Most methods, such as those proposed
by Jain and Feng (2011) and Cappelli et al. (2010a) utilise a radius in the 75
to 90 pixel range. However, these lengths are speci�c for �ngerprint images
captured at 500 dpi and needed to be adjusted when the �ngerprint images
are captured at a di�erent resolution.

2.2.2.3 Minutia Cylinder Code descriptor

One of the few �ngerprint matching algorithms that successfully employs the
local similarity score as a stand-alone score was developed by Cappelli et al.
(2010a). They developed a new type of descriptor, the Minutia Cylinder Code
(MCC), which converts the local region within a �xed radius about each minu-
tia point into a three-dimensional cylinder where the vertical axis represents
the orientation, while the two horizontal axes represent the x and y coordi-
nates, as illustrated in Figure 2.3. The cylinder is subdivided into cuboids,
where each cuboid is assigned a value between 0 and 1 based on the extent
to which a neighbouring minutia point falls within the orientation and spatial
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Figure 2.3: The local neighbourhood minutia point descriptor as created and
illustrated by Cappelli et al. (2010b).

range of the cuboid in question. Said value is determined through normaliza-
tion functions and statistical rules. The local similarity between two minutia
point descriptors is calculated as follows,

Slocal(MkT ,Mk′
Q

) =


1−

‖ CkT −Ck′
Q
‖

‖ CkT ‖ + ‖ Ck′
Q
‖
, if CkT and Ck′

Q
are

matchable

0, otherwise

, (2.9)

where CkT and Ck′
Q
are the cylinder codes for minutia points MkT and Mk′

Q

which belongs to �ngerprints T and Q respectively.
The local similarity value based on the MCC descriptor shares the general

advantages associated with local similarity values based on other descriptors,
but the MCC-based local similarity value can be calculated more e�ciently
since the descriptor has a �xed length. MCC descriptors may be more distinc-
tive than other �xed length descriptors since they incorporate a larger region
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with more information. The MCC local descriptor deals well with border er-
rors and accounts for partial overlap, since cuboids are identi�ed as invalid
when they fall outside the overlapping region and are only compared if valid
in both cylinders. This method is however sensitive to noise as a result of the
fact that the descriptor includes all the neighbouring minutia points within a
�xed radius. Even so, a study conducted by Feng and Zhou (2011) showed
that the MCC local descriptor is the best local descriptor for point matching
and is only outperformed by hybrid approaches for �ngerprint comparisons
with a partial overlap.

2.2.3 Structural similarity score calculation methods

The similarity score calculation methods in this group measure the pro�ciency
with which the paired minutia points are aligned. A measure that estimates
the pro�ciency of the alignment is calculated for each minutia pair and the
average of these measures constitutes the similarity score.

Conti et al. (2013) calculate the similarity score as the average of the 12
largest structural similarity values between the paired minutia points, where
the structural similarity between a pair of minutia points after alignment is
calculated as follows,

Spair(MkT ,Mk′
Q

) = 0.75

(
1− γ

γT

)
+ 0.25

(
1− ψ

ψT

)
, (2.10)

where Spair(MkT ,Mk′
Q

) depicts the structural similarity between the paired
minutia points, MkT and Mk′

Q
represent minutia points from �ngerprints T

and Q respectively, and γ and ψ denote the Euclidean distance and orienta-
tion di�erence between the two minutia points respectively. The symbols γT
and ψT are normalization constants. The similarity score calculated using this
approach may be sensitive to partial overlap and nonlinear distortion. How-
ever, this similarity score should not be a�ected by noise when the matching
minutia points are accurately paired.

Cappelli et al. (2010a) convert the relaxation approach proposed by Feng
et al. (2006) in such a way that the structural similarity between paired minutia
points can be calculated without alignment. For each set of paired minutia
points, the structural similarity is calculated with respect to the best other
paired minutia points. This approach is similar to the calculation of the local
similarity measure, but occurs on a global level instead and involves only the
paired minutia points and not the local neighbouring minutia points. Cappelli
et al. (2010b) improve on this approach and combine the feature di�erences
for each pair of minutia points into a value ρ(k, i), where
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ρ(k, i) =
3∏
s=1

κ(Ds, υ
ρ
s , τ

ρ
s ) (2.11)

D1 =
| dki − dk′i′ |
dki + dk′i′

, (2.12)

D2 =| dΘ (βki, βk′i′) |, (2.13)

D3 =| dΘ (φki, φk′i′) |, (2.14)

(2.15)

with υρs and τ ρs normalization constants and dki, βki, and φki as de�ned in
Figure 2.2, except that Mk and Mk′ represent the kth paired minutia points
after alignment, while and Mi and Mi′ depict the ith paired minutia points
and not the neighbouring minutia points. κ represents the symmetrical sigmoid
function,

κ (x, υ, τ) =
1

1 + e−τ(x−υ)
, (2.16)

while the orientation di�erence in the range [0, π] is de�ned as follows,

dΘ (θ1, θ2) =


θ1 − θ2, if − π ≤ θ1 − θ2 < π

2π + θ1 − θ2, if θ1 − θ2 < −π
−2π + θ1 − θ2, if θ1 − θ2 ≥ π.

(2.17)

The �nal relaxed similarity measure for one minutia pair is calculated as fol-
lows,

λnk = wR.λ
n−1
k + (1− wR) .

(
nR∑

i=1,i6=k

ρ (k, i) .λn−1i

)
/ (nR − 1) , (2.18)

where wR ∈ [0, 1] is a constant, λn−1i initially denotes the local similarity
measure for each pair (when n = 0), and then represents the relaxed similarity
measure of the previous cycle (when n > 0). The index k represents the speci�c
paired minutia points for which the structural similarity is being calculated,
while the symbol λ denotes the ith of the other paired minutia points being
considered and nR the number of paired minutia points being compared. The
paired minutia points are then ordered based on the e�ciency, ε, where ε is a
measure of the extent to which their local similarity also holds globally. The
e�ciency is calculated as follows,

ε =
λnrelk

λ0k
, (2.19)

where λ0k represents the local similarity assigned to the kth pair of minu-
tia points and λnrelk the relaxed global structural similarity of the kth paired
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minutia points after nrel relaxation cycles. The relaxed structural similarity,
which includes the local similarity, are averaged for a �xed number of pairs in
order to obtain the structural similarity score.

The approach proposed by Cappelli et al. (2010b) is invariant with respect
to translation and rotation, does not need alignment and may be robust with
respect to noise to a certain extent. Additionally, the relevant distance feature
also renders it more robust to nonlinear distortion than is the case for the
approach proposed by Conti et al. (2013). The main problem associated with
this approach is that it either estimates the number of paired minutia points
or uses a �xed number. The overestimation of the number of paired minutia
points may lead to sensitivity of the similarity score to partial overlap or noise,
while an underestimation may fail to capture the dissimilarity of impostor
comparisons. On the other hand, since it estimates the number of paired
minutia points, it will assign an equal number of paired minutia points to
impostor and genuine comparisons, which may better capture the dissimilarity
of comparisons with high levels of global inter-class similarity.

2.2.4 Hybrid similarity score calculation methods and

score fusion

Few existing methods combine two of the three types of similarity score cal-
culation methods (as outlined in Sections 2.2.1 to 2.2.3) and the author is not
aware of a method that combines all three methods. Score fusion constitutes
the process of combining multiple features or matching score values into a sin-
gle value. The purpose of score fusion is to determine the likelihood that a
comparison is genuine, given di�erent features or matching score values that
may be robust to di�erent types of intra-class variations or inter-class simi-
larities. In the current literature, score fusion techniques are typically divided
into three groups (Nanni et al., 2014; He et al., 2010): (1) density-based fusion,
(2) classi�er-based fusion, and (3) transformed/combination-based fusion.

Density-based, classi�er-based and transformed/combination-based fusion
techniques may accurately combine many features or matching score values,
but these approaches have one drawback: they all require training data (Nanni
et al., 2012). Density-based fusion techniques require training data to es-
timate class-conditional density functions, classi�er-based fusion techniques
need training data to determine the optimal separation between the two classes
(i.e. those associated with genuine and impostor comparisons) and most
transformed/combination-based fusion techniques need training data to deter-
mine the weights associated with speci�c features or normalization parameters
(Nandakumar et al., 2008).

There do however exist transformed/combination-based fusion techniques
such as the sum or multiplication rule, for which the incorporation of normal-
ization techniques may improve system pro�ciency through fusion. Normal-
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ization constitutes the process by which a range of feature values are scaled to
a new, more standardized range. Feature normalization may be achieved by
dividing certain features with other features or by using existing normaliza-
tion functions like the max-min normalization function, decimal scaling, the
z-score, the median and the median deviation, the sigmoid function and tanh-
estimators. A linear normalization function like the max-min function only
changes the range of a feature, while nonlinear normalization functions like
sigmoid functions or tanh-estimators may also change the feature's distribu-
tion (Jain et al., 2005).

Certain existing methods combine one or more of the di�erent types of
similarities (outlined in Sections 2.2.1 to 2.2.3) with normalization techniques
and the multiplication rule in order to improve system accuracy. An example
of said methods is the similarity score calculation method proposed by Cappelli
et al. (2010b), which combines the local similarity score calculation method
with the structural similarity score calculation method. This is categorised
as a hybrid strategy, since the local similarity score is robust to nonlinear
distortion, while the structural similarity score calculation method is used
to capture distinctiveness. Although the above technique is more frequently
used within the point matching algorithm, it also addresses the di�erent intra-
class variations (to a certain degree) during similarity score calculation. This
approach may however not address the problem of local inter-class similarity
when both the local similarity score calculation method and the structural
similarity score calculation method only consider the overlapping region.

The most popular trend is to combine the �percentage of the paired minu-
tia points� similarity score calculation method and the local similarity score
calculation method, as proposed by Jain et al. (2008), Zhu et al. (2005), Fu
and Feng (2015), and Fu et al. (2013). Jain et al. (2008) account for partial
overlap and local inter-class similarity by using a penalization factor on the
�percentage of paired minutia points�-component of the score. These similarity
score calculation methods do however not include the structural similarity of
the paired minutia points on a global level and may therefore be sensitive to
noise.

2.3 Performance of similarity score calculation

methods

The current literature does not provide a clear answer as to how existing simi-
larity score calculation methods perform. The performance measures employed
for most existing minutia-based matching algorithms include both the errors
incurred during the implementation of the point matching algorithm and the
errors incurred during similarity score calculation. The performance of dif-
ferent similarity score calculation methods can therefore not be determined
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with con�dence. Furthermore, each similarity score calculation method may
be implemented on a very speci�c point matching algorithm. Khanyile et al.
(2014) conducted the only study that the author is aware of, that compares
di�erent similarity score calculation methods by using the same point match-
ing and minutia extraction algorithms. Their study however only focuses on
�percentage of paired minutia points� similarity score calculation methods and
incorporates point matching errors in the reported performance.

When the top 10 most accurate minutia-based matching algorithms (i.e.
point matching and similarity score calculation algorithms) are considered,
ranked according to their achieved EER as reported in the ongoing on-line
Fingerprint Veri�cation Competition (FVC) on 12 October 2015, only two
algorithms have been formally published, namely the Local Greedy Similar-
ity with Distortion-Tolerant Relaxation (LGS_DTR) algorithm by Cappelli
et al. (2010b) and the M3gl algorithm by Medina-Pérez et al. (2012). The
LGS_DTR algorithm averages a point matching relaxation step by Feng et al.
(2006) on the MCC local similarity in order to calculate the similarity score,
while the M3gl algorithm uses the conventional �percentage of paired minutia
points� similarity score as proposed by Jea and Govindaraju (2005). The sim-
ilarity score calculation methods employed by the above-mentioned top two
minutia-based matching algorithms demonstrate that similarity score calcula-
tion methods have not been improved upon over the last decade and may not
address all the di�erent types of intra-variations and inter-class similarities.

There are four main reasons as to why similarity score calculation methods
have not improved signi�cantly over the last decade. Firstly, the system fails
whenever the point matching algorithm fails, which has lead researchers to
focus on making the point matching algorithms more robust with respect to
intra-class variations. Secondly, multiple features or similarity scores can be
more easily combined with machine learning techniques than through a manual
method (Feng, 2008). Thirdly, the conventional �percentage of paired minu-
tia points� similarity score calculation methods perform well when low levels
of intra-class variations and inter-class similarities are present. Finally, the
commercialization of automated veri�cation systems limited the publication
of advanced minutia-based matching algorithms.

The limited research on similarity score calculation methods (as outlined
above) may result in a number of problems pertaining to minutia-based �n-
gerprint matching. Firstly, since it is not clear which similarity score cal-
culation method performs best, advanced minutia-based �ngerprint matching
algorithms continue to use conventional similarity score methods that cannot
deal with di�erent types of intra-class variations and inter-class similarities.
Secondly, it is not exactly clear where the problem in minutia-based matching
(i.e. point matching or similarity score calculation) lies, and how the similarity
score calculation methods and/or point matching algorithms are a�ected by
di�erent types of intra-class variations and inter-class similarities. This leads
to less pro�cient minutia-based �ngerprint matching algorithms and inhibits
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progress.

2.4 Summary and conclusion

The last step of any �ngerprint matching algorithm involves the calculation
of the similarity score value in order to distinguish between genuine and im-
postor comparisons. Similarity scores can be categorised into three groups,
based on how they are calculated, as well as their sensitivity and robustness
with respect to intra-class variations and inter-class similarities: (1) percent-
age of paired minutia points, (2) local similarity score calculation methods,
and (3) structural similarity score calculation methods. While each of these
methods primarily deals with a speci�c type of intra-class variation and inter-
class similarity, no method currently exists that combines all three types of
similarity score calculation methods. Furthermore, the current literature does
not establish whether the utilisation of existing similarity score calculation
methods are su�cient in scenarios where high levels of intra-class variation or
inter-class similarity are present and does not determine which similarity score
calculation methods are the most pro�cient, since their performance measures
also include those comparisons for which the point matching algorithm failed.
The current literature does therefore not provide an indication as to the ap-
propriate methodology for calculating a similarity score that can accurately
distinguish between genuine and impostor comparisons when high levels of
intra-class variations and inter-class similarities are present.
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Methodology

3.1 Introduction

A comparative study of the pro�ciency with which the similarity score values
calculated through the methods detailed in Chapter 2, i.e. the literature review
is conducted as follows.

Table 3.1: Identi�ers assigned to each similarity score calculation method.

Paper Identi�er
Jain et al. (2008) S1

Cappelli et al. (2010b) (local method) S2

Cappelli et al. (2010b) (complete method) S3

Medina-Pérez et al. (2012) S4

Fu et al. (2013) S5

Khanyile et al. (2014) S6

Fu et al. (2013) (without the local similarity) S7

1. The minutia-based matching algorithms documented in the papers spec-
i�ed in Table 3.1 are used to calculate similarity score values for genuine
and impostor comparisons using minutia points extracted from �nger-
prints considered for the 2002 and 2004 Fingerprint Veri�cation Compe-
titions (FVCs), i.e. FVC2002 and FVC2004, by implementing the Fin-
gerJet minutia point extraction software developed by DigitalPersona.

2. Each genuine comparison is classi�ed into one of the following eight gen-
uine comparison classes:

� GC1, that contains genuine comparisons with high noise levels, i.e.
scenarios where many unpaired minutia points are present within

27
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in the overlapping region of the convex hulls of the minutia points
being compared;

� GC2, that contains genuine comparisons for which the minutia
points from one of the �ngers being compared are subjected to high
levels of distortion, mostly in the form of stretching;

� GC3, that contains genuine comparisons with a small overlapping
region;

� GC4, that contains genuine comparisons which satisfy all the cri-
teria for classes GC1 and GC2;

� GC5, that contains genuine comparisons which satisfy all the cri-
teria for classes GC1 and GC3;

� GC6, that contains genuine comparisons which satisfy all the cri-
teria for classes GC2 and GC3;

� GC7, that contains genuine comparisons which satisfy all the cri-
teria for classes GC1, GC2, and GC3; and

� GC8, that contains genuine comparisons which do not satisfy any
of the criteria for the above seven classes.

3. Each impostor comparison is classi�ed into one of the following three
impostor comparison classes:

� IC1, that contains impostor comparisons with high levels of global
inter-class similarity;

� IC2, that contains impostor comparisons with high levels of local
inter-class similarity; and

� IC3, that contains impostor comparisons which do not meet any of
the criteria for classes IC1 and IC2.

4. The similarity score values are then used to estimate the False Match
Rate (FMR) and False Non-Match Rate (FNMR) for di�erent threshold
values using Equations 3.1 and 3.2 for the FMR and FNMR respectively,

FMR(t) =
FP(t)

IC
, (3.1)

FNMR(t) =
FN(t)

GC
, (3.2)

where:

� t is the similarity score threshold value;

� FP(t) is the number of false positives, i.e. the number of impostor
comparisons with similarity score values greater than t;

� IC is the total number of impostor comparisons;
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� FN(t) is the number of false negatives, i.e. the number of genuine
comparisons with similarity score values less than t; and

� GC is the total number of genuine comparisons.

5. The FMR and FNMR are then used to estimate the following perfor-
mance indicators:

� The Equal Error Rate (EER), that constitutes the value of the FMR
or the FNMR, where their plots as functions of t intersect.

� FMRzero, that constitutes the value of the FNMR for which the
FMR-value is equal to 0.

� FNMRzero, that constitutes the value of the FMR for which the
FNMR-value is equal to 0.

Note that:

� The EER is used to estimate the pro�ciency of a speci�c similarity
score value being used to tell impostor and genuine comparisons
apart, but is only applicable to the speci�c database on which the
FMR and FNMR are estimated.

� The FMRzero and FNMRzero further quantify the e�ect of impostor
comparisons with similarity score values above the threshold or gen-
uine comparisons with similarity score values below the threshold.
Again this only applies to the speci�c database on which the FMR
and FNMR are estimated.

6. Lastly, all impostor and genuine comparisons with similarity score val-
ues (as calculated through the methods outlined in Table 3.1) that are
greater than or less than the similarity score value associated with the
EER (for each respective method) are identi�ed as problematic compar-
isons. The number of problematic comparisons for each similarity score
calculation method is recorded and used to separate said methods into
di�erent genuine and impostor comparison classes in order to get an idea
as to which inter-class similarities or inter-class variations these di�erent
methods are sensitive to, either individually or in combination.

The similarity score calculation methods documented in the papers spec-
i�ed in Table 3.1 are selected for comparison purposes, since these papers
provide signi�cant detail on how the similarity score in question is calculated.
They also clearly specify whether the methods presented in Chapter 2 are im-
plemented individually or in combination. FingerJet is used to extract minutia
points from the �ngerprints since this software is freely available, is MINEX
certi�ed, and has been shown to perform in the top 10% of minutia point
extraction software when software from 68 di�erent vendors are considered.
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The above process is performed on only a few selected FVC2002 and
FVC2004 �ngerprint databases, and steps 2 and 6 are only performed on one
database from each of the FVC2002 and FVC2004 �ngerprint databases. Im-
postor and genuine comparisons are identi�ed for each database, using the
FVC protocol.

This chapter provides details on the:

� FVC2002 and FVC2004 �ngerprint databases, specifying the databases
on which the above-mentioned procedure is implemented, and providing
a justi�cation for excluding certain databases;

� Criteria used to assign genuine and impostor comparisons to the classes
as de�ned above; and

� Algorithms that are implemented on paired minutia points in order to
ensure that minutia point matching errors are not incorporated into
the results; the calculation of a similarity score is based on the same
paired minutia points for genuine comparisons. This procedure is fol-
lowed since most of the matching algorithms pair minutia points using
di�erent methods, which may lead to di�erences in performance.

3.2 The �ngerprint databases considered for

pro�ciency testing

In order to evaluate the pro�ciency of the di�erent similarity score calculation
methods in accurately discriminating between genuine and impostor compar-
isons, �ngerprints from the 2002 and 2004 Fingerprint Veri�cation Competi-
tions (FVCs) were considered. This chapter does not provide a detailed report
on the data collection and image acquisition protocol, since said protocol is
documented in Maio et al. (2002) and Maio et al. (2004). However, this chap-
ter does mention the speci�cations that may have an in�uence on the di�erent
types of intra-class variations and inter-class similarities.

The �ngerprints for both competitions are arranged into four databases,
DB1, DB2, DB3, and DB4, which are further sub-divided into database A and
database B. All the A-databases contain 800 �ngerprints from 100 �ngers with
eight �ngerprints per �nger, while the B-databases contain 80 �ngerprints
from 10 �ngers with eight �ngerprints per �nger. However, only databases
DB1_A, DB2_A, and DB3_A (associated with both competitions) are used
for evaluation purposes, since database DB4 contains synthetic �ngerprints
and the B-databases do not contain a su�cient number of samples.
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3.2.1 The FVC2002 �ngerprint databases

Databases DB1_A, DB2_A, and DB3_A for FVC2002 contain �ngerprints
of the fore�ngers and middle �ngers of both hands of three randomly selected
groups of 30 students with an average age of 20 years. No intentional acqui-
sition di�erences were introduced between these three groups. Furthermore,
no minimum quality standard was required for the �ngerprint images to be
included in the databases and the surfaces of the sensors were not cleaned be-
tween acquisitions. During three di�erent sessions, two weeks apart, volunteers
had to present four impressions of each of the four �ngers in question. The vol-
unteers were requested to translate and rotate their �ngers during the second
session when two of the four �ngerprints were captured, but the rotation was
restricted to 35◦. During the third session, the �rst and second �ngerprints
were captured after drying the �nger, while the third and fourth �ngerprints
were captured after the �nger was moistened. Therefore, 12 �ngerprints were
collected from a total of 120 �ngers.

Fingerprints of the same �nger were then categorised into groups, after
which said groups were arranged according to the average quality of the �nger-
prints within each group. The �ngerprints among all 10 groups with the high-
est image quality, as well as the four �ngerprints within each group with the
highest quality were subsequently removed. The database was consequently
reduced to �ngerprints from 110 �ngers with eight �ngerprints for each �nger,
and divided into databases A and B as outlined above.

3.2.2 The FVC2004 �ngerprint databases

The same procedure was followed for the FVC2004 databases in order to ac-
quire �ngerprints for databases DB1_A, DB2_A, and DB3_A. The average
age of a student volunteer was however 24 years. During the second session,
the volunteers were requested to introduce distortion during the acquisition of
�ngerprints 1 and 2, as well as to rotate their �ngers during the acquisition of
�ngerprints 3 and 4. All the images captured in both of these databases were
captured at a resolution of approximately 500 dpi.

3.3 Classi�cation of impostor comparisons

In this study the impostor comparisons are classi�ed into three groups, IC1-
IC3, by applying thresholds to two measures that capture the global and
local inter-class similarities. The global inter-class similarity measure, SGS, is
calculated as follows,

SGS =

[
2Nm

NTO +NQO

]
·
[
NTO +NQO

NT +NQ

]
, (3.3)
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while the local inter-class similarity measure, SLS, is calculated as follows,

SLS =

[
2Nm

NTO +NQO

]
·
[
1−

(
NTO +NQO

NT +NQ

)]
, (3.4)

with Nm, NTO, NQO, NT, and NQ as de�ned in Chapter 2. If a comparison
is associated with a SGS-measure that is equal to or greater than 0.1896, it is
classi�ed as a comparison associated with high levels of global inter-class simi-
larity (group IC1), while comparisons with a SLS-measure equal to or greater
than 0.1298 are classi�ed as comparisons associated with high levels of local
inter-class similarity (group IC2). When a comparison does not satisfy either
one of the above two conditions, it is classi�ed as belonging to group IC3.
The protocol that is followed to determine the above thresholds is explained
in more detail in Appendix A.

3.4 Classi�cation of genuine comparisons

Each genuine comparison is compared to three thresholds in order to determine
to which of the eight groups, GC1-GC8, as mentioned in the introduction, it
belongs. These three thresholds are applied to the following three measures:

� The ratio of paired to unpaired minutia points in the overlapping region;
this is used to estimate the level of noise that is present in a �ngerprint
comparison.

� The average Euclidean distance between minutia points that form pairs;
this is used to estimate the level of nonlinear distortion that is present
in a �ngerprint comparison.

� The size of the overlapping region; this is used to estimate the extent of
the partial overlap in a �ngerprint comparison.

The thresholds applied to the above-mentioned three measures are 0.50, 7.00
pixels, and 2500 squared pixels, respectively. The protocol that is followed to
determine the above thresholds is also explained in more detail in Appendix A.

3.5 Matching of minutia points

The similarity score calculation methods documented in the papers listed in
Table 3.1 require a list of paired minutia points and also involves the calculation
of the local similarity between the paired points. Additionally, the paired
minutia points for similarity score calculation methods S1 and S4 − S7 are
based on the spatial and orientation similarity after alignment, while the paired
minutia points for similarity score calculation methods S2 and S3 are based on
the local similarity between the minutia points. The pairs in the �rst group of
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similarity score calculation methods are therefore identi�ed by applying two
thresholds (i.e. 15 pixels and 30◦) to the aligned minutia sets. The pairs of
minutia points in the second group of similarity score calculation methods are
obtained by applying the Local Greedy Similarity (LGS) assignment method,
as developed by Cappelli et al. (2010b), to the local similarity matrix. The
procedure for determining this alignment and the local similarity matrix is
explained in the following subsection.

3.5.1 Computation of alignment parameters

The parameters required to transform (i.e. rotate and translate) minutia points
of one �ngerprint in such a way that they form a similar pattern than (are
aligned to) those of another �ngerprint (it is being compared to) are determined
as follows:

1. The local similarity values (as described in Chapter 2) between each
minutia point of one �ngerprint and all the minutia points of another
�ngerprint (it is being compared to) is �rst calculated. The resulting
local similarity values are stored in a similarity matrix with both the
number of rows and columns equal to the number of minutia points
within the �ngerprints being compared.

2. The three minutia points that matches the best are then identi�ed by
processing the similarity matrix of step 1.

3. Finally, the Kabsch algorithm (Kabsch, 1976) is applied in order to cal-
culate the extent of rotation and translation that is required to align the
three most similar pairs of minutia points (as identi�ed in step 2).

The local similarity between minutia points is calculated using the Minutia
Cylinder Code (MCC) descriptor within version 1.4 of the MCC Software De-
velopment Kit (SDK) with parameters as speci�ed by Cappelli et al. (2010b).
In order to identify the three best matching minutia points, the Local Greedy
Similarity (LGS) assignment algorithm proposed by Cappelli et al. (2010b) is
applied to the similarity matrix, so that a list of the n-best pairs of matching
minutia points are produced in descending order based on the local similarity
value, where n equals the number of minutia points in the �ngerprint with
the fewer minutia points. The distortion tolerant relaxation (DTR) algorithm
proposed by Cappelli et al. (2010b) is subsequently applied to the local simi-
larity of the paired minutia points in order to calculate similarity values that
are based on how well the paired minutia points align. The paired minutia
points are rearranged in descending order according to the ratio of the new
similarity to the local similarity, and the three best matching minutia points
are identi�ed from the new list.
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Figure 3.1: A comparison that is manually inspected in order to determine
whether the point matching algorithm's three most similar minutia pairs corre-
spond or not, and in so doing determine whether the point matching algorithm
succeeded or not.

3.5.2 Comparisons with incorrectly paired minutia

points

Genuine comparisons with incorrectly paired minutia points are identi�ed by
manually comparing the locations of the three most similar paired minutia
points, as explained in Section 3.5.1. Figure 3.1 depicts typical images that
are used to visually compare the three most similar pairs of minutia points.
This comparison is however only performed on a subset of genuine comparisons.
This subset consists of comparisons for which the similarity score values (as
calculated using the methods proposed by Fu et al. (2013), Jain et al. (2008),
and Cappelli et al. (2010b)) are lower than the similarity score value at the
EER of at least one of the score value distributions for each similarity score
calculation method when implemented on the database that the comparison
is associated with. Only these subsets of genuine comparisons are visually
compared due to the impracticality of manually comparing all of the 2800
genuine comparisons within all six databases. The erroneous comparisons1

that are removed are listed in Appendix B.

1An erroneous comparison is de�ned as a comparison for which the point matching

algorithm failed to correctly identify the three most similar paired minutia points.
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3.6 Summary

This chapter outlined the methodology followed in this thesis to compare the
performance of seven existing similarity score calculation methods and con-
stitutes three signi�cant improvements to existing methodologies. Firstly, it
considers the same minutia extractor and point matching algorithm in order
to produce the data for the similarity score calculation methods. Secondly, it
removes comparisons where the alignment procedure and point matching algo-
rithm completely fail and therefore prevents these erroneous comparisons from
adversely a�ecting the pro�ciency of the similarity score calculation methods
being investigated. Thirdly, it analyses the genuine and impostor compar-
isons that these similarity score calculation methods fail to correctly classify
and therefore provides some insight into the strengths and weaknesses of these
similarity score calculation methods as will be discussed in more detail in the
following chapter.
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Chapter 4

Results and analysis

This chapter presents the results that are obtained when the methodology
presented in Chapter 3 is implemented and also provides a detailed analy-
sis of said results. Guidelines can therefore be formulated for calculating a
similarity score that is able to more accurately tell genuine and impostor com-
parisons apart, taking both inter-class similarities and intra-class variations
into account.

4.1 Results

4.1.1 Erroneous comparisons

As explained in Chapter 3, the methodology consists of three stages: (1) minu-
tia extraction, (2) point matching, and (3) similarity scores calculation. A
comparison may therefore be incorrectly classi�ed as either a genuine or an
impostor comparison due to the failure of any of the above three stages. How-
ever, as previously explained, the erroneous comparisons identi�ed during the
�rst two stages are removed from the experiment in order to prevent these
errors from a�ecting the �nal stage. The number of erroneous comparisons
identi�ed during each stage are listed in Table 4.1.

It is clear that the minutia extractor successfully extracts the minutia
points for all the �ngerprints in the FVC2002 DB1_A and FVC2002 DB2_A
databases, but however fails for a certain number of �ngerprints in the other
databases. The point matching algorithm and best similarity score calcula-
tion method produce a similar number of erroneous comparisons in each of
the FVC2002 �ngerprint databases, while the point matching algorithm pro-
duces slightly more erroneous comparisons when implemented on the FVC2004
databases. These results do however con�rm that the similarity score calcula-
tion method utilised also contributes towards the error rate for minutia-based
matching algorithms.

36
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Table 4.1: The number of erroneous comparisons within each database identi-
�ed during the di�erent stages of the experiment.

Database Stage 1 Stage 2 Stage 3
FVC2002 DB1_A 0 21 23
FVC2002 DB2_A 0 20 29
FVC2002 DB3_A 341 96 97
FVC2004 DB1_A 41 193 157
FVC2004 DB2_A 124 189 118
FVC2004 DB3_A 886 156 74

4.1.2 Performance evaluation

The values obtained for the EER, FMRzero, and FNMRzero when the similar-
ity score calculation methods proposed in each of the seven papers listed in
Table 3.1 is implemented for genuine and impostor comparisons on each of the
FVC2002 and FVC2004 �ngerprint databases, are shown in Tables 4.2 and
4.3. The following observations are made.

1. The EER, FMRzero, and FNMRzero obtained for the FVC2002 �ngerprint
databases are generally lower than those for the FVC2004 �ngerprint
databases. This indicates that it is more di�cult to tell genuine and im-
postor comparisons apart for the �ngerprints in the FVC2004 databases
than is the case for those in the FVC2002 databases.

2. The EERs obtained when similarity score calculation method S3 is used,
is the lowest for �ve out of the six FVC2002 and FVC2004 �ngerprint
databases.

3. The EERs obtained when similarity score calculation method S4 is used,
is the highest for all of the FVC2002 �ngerprint databases.

4. The EERs obtained when similarity score calculation method S2 is used,
is the highest for two of the three FVC2004 �ngerprint databases.

5. The ranking of the similarity score calculation methods based on the
EER is not consistent throughout all the �ngerprint databases.

6. The FNMRzero-values obtained when similarity score calculation method
S2 is used, is generally higher than those obtained through other meth-
ods.

7. The lowest FNMRzero is obtained when the following similarity score
calculation methods are used:

� S5 for two of the three FVC2002 �ngerprint databases;
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Table 4.2: The performance measures for the di�erent similarity score calcu-
lation methods when implemented on the �ngerprint databases for FVC2002.
For each database the boxed entries represent the best three performances,
when all three measures are considered. The three lowest and highest error
rates for each individual measure are respectively denoted in boldface and un-
derlined.

Method EER % FNMRzero % FMRzero %

DB_1
S1 0.47 9.88 3.99
S2 0.73 65.96 2.20

S3 0.47 38.30 1.76
S4 2.23 41.72 13.57

S5 0.43 7.52 9.86
S6 1.92 41.29 12.49
S7 0.76 14.95 52.21

DB_2
S1 0.64 17.64 2.66
S2 0.74 76.55 10.61

S3 0.36 11.11 1.15
S4 1.64 33.47 12.45
S5 0.53 16.85 3.78
S6 1.39 32.77 11.22
S7 0.83 22.77 13.78

DB_3
S1 1.46 25.18 13.32
S2 2.63 96.76 13.71

S3 1.36 38.21 6.52
S4 4.60 60.49 24.26

S5 1.61 16.22 29.84
S6 4.09 60.05 21.41
S7 2.15 21.65 88.63

� S6 for two of the three FVC2004 �ngerprint databases; and

� S3 for one of the three FVC2002 �ngerprint databases and for one
of the three FVC2004 �ngerprint databases.

8. For all the databases, the lowest FMRzero is obtained when similarity
score calculation method S3 is implemented.

9. The EER, FMRzero, and FNMRzero obtained when similarity score cal-
culation method S7 is used, are higher than those obtained for similarity
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Table 4.3: The performance measures for the di�erent similarity score calcu-
lation methods when implemented on the �ngerprint databases for FVC2004.
For each database the boxed entries represent the best three performances,
when all three measures are considered. The three lowest and highest error
rates for each individual measure are respectively denoted in boldface and un-
derlined.

Method EER % FNMRzero % FMRzero %

DB_1
S1 3.15 100.0 28.18
S2 4.27 99.11 30.63

S3 2.09 77.25 14.81
S4 3.77 100.0 28.68
S5 3.75 100.0 34.41
S6 3.66 88.34 30.28
S7 4.70 78.73 50.58

DB_2
S1 2.88 37.68 33.31
S2 5.20 98.48 48.29

S3 1.62 42.32 19.49
S4 3.97 36.85 43.39
S5 3.69 49.74 45.48

S6 3.57 32.48 37.16
S7 3.98 37.15 88.59

DB_3
S1 2.66 51.26 43.50
S2 5.25 95.58 29.59

S3 1.16 62.83 7.04
S4 2.69 47.97 22.22
S5 2.83 49.44 77.33

S6 2.72 47.21 21.85
S7 3.27 52.64 93.29

score calculation method S5, except for two occasions in the case of the
FNMRzero. Note that similarity score calculation method S7 is equivalent
to method S5, except that the local similarity component is not present.

10. The EERs obtained when similarity score calculation method S5 is used,
always rank within the top three lowest EERs for the FVC2002 �nger-
print databases. They also always rank within the top four highest EERs
when the FVC2004 �ngerprint databases are considered.
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11. The EERs obtained when similarity score calculation methods S1 and S3

are used, always rank within the top three lowest EERs for the FVC2002
and FVC2004 �ngerprint databases.

12. The EERs obtained when similarity score calculation method S6 is used,
rank within the top three lowest EERs for two of the three FVC2004
�ngerprint databases.

13. Similarity scores obtained through methods that combine the local sim-
ilarity score with either the structural similarity score or the percentage
of paired minutia points, generally result in a lower EER, FMRzero, and
FNMRzero.

4.1.3 Classi�cation of impostor and genuine

comparisons

Table 4.4: Results for genuine comparisons. The number of genuine com-
parisons that is categorised into each group for the FVC2002 DB1_A and
FVC2004 DB1_A databases are depicted in boldface, while the number of
problematic comparisons in each group produced by implementing the di�er-
ent similarity score calculation methods are shown in normal font.

GC1 GC2 GC3 GC4 GC5 GC6 GC7 GC8 Total

FVC 2002 DB1_A
3 256 684 11 1 28 0 1796 2775

S1 2 0 1 9 1 0 0 0 13
S2 0 1 16 0 0 3 0 0 20
S3 0 0 12 0 0 1 0 0 13
S4 1 1 53 4 0 2 0 1 62
S5 2 0 1 9 0 0 0 0 12
S6 1 1 44 4 0 2 0 1 53
S7 3 5 0 11 1 0 0 1 21

FVC 2004 DB1_A
71 678 296 234 16 58 19 1194 2566

S1 10 0 0 56 9 0 5 0 80
S2 21 12 9 31 6 9 9 9 106
S3 2 7 4 20 6 5 9 1 54
S4 10 5 20 33 12 4 14 0 98
S5 19 0 0 70 5 0 1 0 95
S6 11 5 17 33 10 4 13 1 94
S7 21 0 0 91 7 0 2 0 121
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Table 4.5: Results for impostor comparisons. The number of impostor com-
parisons that is categorised into each group for the FVC2002 DB1_A and
FVC2004 DB1_A databases are depicted in boldface, while the number of
problematic comparisons in each group produced by implementing the di�er-
ent similarity score calculation methods are shown in normal font.

Method IC1 IC2 IC3 Total
FVC2002 DB1_A

940 235 3775 4950
S1 17 6 0 23
S2 22 0 15 37
S3 21 0 2 23
S4 110 0 0 110
S5 10 11 0 21
S6 96 0 0 96
S7 24 14 0 38

FVC2004 DB1_A
840 390 3720 4950

S1 141 17 0 158
S2 95 15 108 218
S3 77 10 16 103
S4 184 0 0 184
S5 146 42 0 188
S6 181 0 0 181
S7 176 56 0 232

The number of genuine and impostor comparisons from the FVC2002
DB1_A and FVC2004 DB1_A �ngerprint databases that are categorised into
the di�erent genuine and impostor comparison classes are shown in Tables 4.4
and 4.5 respectively. The number of genuine and impostor comparisons within
each class that are incorrectly classi�ed are also shown. For each method, the
similarity score threshold which results in FMR = FNMR is imposed.

The following are observed from the data presented in Tables 4.4 and 4.5.

1. There are more genuine comparisons with high levels of intra-class vari-
ations in the FVC2004 DB1_A �ngerprint database. This possibly ex-
plains why a lower EER, FMRzero, and FNMRzero are obtained for all
the similarity score calculation methods when they are implemented on
�ngerprints in the FVC2002 DB1_A database than is the case for the
FVC2004 DB1_A database.
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2. The number of imposter comparisons in the FVC2002 DB1_A and
FVC2004 DB1_A databases that are categorised into the �rst two classes
of impostor comparisons are comparable (e.g. 1175 versus 1230). How-
ever, there are

� more impostor comparisons from the FVC2002 DB1_A database
that fall under the IC1 class (i.e. 940) than is the case for the
FVC2004 DB1_A database (i.e. 840), and

� less imposter comparisons from the FVC2002 DB1_A database that
fall under the IC2 class (i.e. 235) than is the case for the FVC2004
DB1_A database (i.e. 390).

3. Genuine comparisons that fall under the GC3 class, i.e. genuine com-
parisons with a partial overlap, are classi�ed incorrectly when similarity
score calculation method S2, S3, S4, or S6 is implemented.

4. Genuine comparisons that fall under theGC1 class, i.e. genuine compar-
isons where false minutia points are extracted from one or both of the �n-
gerprints being compared, are less frequently incorrectly classi�ed when
similarity score calculation method S1, S3, S4, or S6 is implemented.

5. Genuine comparisons that fall under the GC2 class, i.e. genuine com-
parisons where one or both �ngerprints being compared are subjected to
nonlinear distortion, are less frequently incorrectly classi�ed when simi-
larity score calculation method S1 or S5 is implemented.

6. Imposter comparisons that fall under the IC3 class, i.e. imposter com-
parisons that do not meet the criteria for both IC1 and IC2, are fre-
quently incorrectly classi�ed when similarity score calculation method
S2 or S3 is implemented. This may explain the fact that the FNMRzero

obtained when method S2 or S3 is implemented, is generally higher than
is the case for other methods.

7. Imposter comparisons that fall under the IC2 class, i.e. imposter com-
parisons with high levels of local inter-class similarity, are correctly clas-
si�ed when method S4 or S6 is implemented.

8. Imposter comparisons that fall under the IC1 class, i.e. imposter com-
parisons with high levels of global inter-class similarity, are incorrectly
classi�ed when method S4, S6, or S7 is implemented.

4.2 Analysis

It can be concluded that not one of the seven tested similarity score calculation
methods is superior to all the others. It does however appear that S3 is the
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best performing similarity score calculation method, since it has the lowest
EER for �ve of the six databases, even though the margin is very small for
two of these databases. Therefore, for the seven similarity scores tested, there
is no single score that can be used in isolation to construct basic guidelines for
developing a pro�cient similarity score calculation method.

However, when the three best similarity scores for FVC2002 DB1_A and
FVC2004 DB1_A, as well as the number of comparisons with high levels of
intra-class variations and inter-class similarities in said databases are consid-
ered, a pattern starts to emerge. The results show that both of these databases
are characterised by di�erent levels and di�erent types of intra-class variations
and inter-class similarities. FVC2002 DB1_A contains more partial over-
lapping sets and higher levels of global inter-class similarity, while FVC2004
DB1_A contains more noise, nonlinear distortion and local inter-class similar-
ity. The emerging pattern lies in the fact that, for both of these databases, the
similarity scores that better address inter-class similarity and are not sensitive
to intra-class similarity perform the best.

For example, S5 performs the best on FVC2002 DB1_A, since it is not
a�ected by partial overlap � it only considers the overlapping region � but still
addresses global inter-class similarity, since it considers the complete overlap
and also takes the local similarity of each pair of minutia points into account.
However, since S5 is highly sensitive to local inter-class similarity, it is less
pro�cient when implemented on FVC2004 DB1_A.

On the other hand, S3, S1, and S6 all address local inter-class similar-
ity, where S1 and S6 include penalization factors and S3 uses more pairs of
minutia points than is present in the small overlapping region. This may con-
tribute to these scores performing better (than S5) on FVC2004 DB1_A, but
it also increases their sensitivity to partial overlap which contributes to them
performing worse (than S5) on FVC2002 DB1_A. Furthermore, S3 is robust
with respect to noise, while S1 and S6 are somewhat robust with respect to
nonlinear distortion, which explains why these methods are pro�cient when
implemented on the databases considered.

The question as to why S1 and S3 are highly pro�cient across both databases
remain. The answer is clear from the statistics for the problematic comparisons
(see Tables 4.4 and 4.5), since both of these similarity scores address both types
of inter-class similarity. Note that global inter-class similarity causes most of
the problematic comparisons for all of the similarity score. These similarity
scores are also not sensitive to many types of intra-class variations. S3 uses the
structural similarity combined with the local similarity and is therefore more
robust with respect to noise for genuine comparisons, while it also captures the
dissimilarity between the paired minutia points in cases of global inter-class
similarity. It also addresses local inter-class similarity (as explained earlier).
S1 performs the best out of the remaining similarity score calculation meth-
ods, since (like S5) it addresses global inter-class similarity, but also (like S6)
addresses local inter-class similarity through a penalization factor.
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This also shows that the two similarity score calculation methods that ad-
dress both global and local inter-class similarities may be more pro�cient across
a range of databases, but not necessarily optimal for a speci�c database. This
may be due to the fact that since they address both types of inter-class similar-
ities, they might be slightly sensitive to extreme cases of intra-class variations.
Therefore, in extreme cases of partial overlap and local inter-class similarity,
the minutia point comparisons are very similar as is the case with high levels of
noise, nonlinear distortion and global inter-class similarity. This may explain
why most existing approaches focus on improving the point matching stage
and address nonlinear distortion during that stage.

From these results, the following guidelines are proposed for calculating a
pro�cient similarity score:

� Firstly, a combination of the local and structural similarity as proposed
by Cappelli et al. (2010b) results in an accurate similarity score, since
it constitutes the most robust type of score with respect to noise, while
it also best captures the dissimilarity of comparisons with high levels of
global inter-class similarity.

� Secondly, penalization factors such as those proposed by Jain et al. (2008)
and Khanyile et al. (2014) should be included in order to prevent im-
postor comparisons with high degrees of local inter-class similarity to be
assigned high similarity score values.

� Thirdly, the percentage of paired minutia points and the local similarity
should be employed, since they are more robust to nonlinear distortion
than is the case for the structural similarity, and also include all the
minutia points. This percentage of paired minutia points term should
however be carefully combined with the structural similarity so that its
sensitivity to noise does not a�ect said structural similarity.

� The percentage of paired minutia points in the overlap achieves a higher
performance when combined with the local similarity, since it better
captures the dissimilarity for impostor comparisons with high levels of
local and global inter-class similarity.

It is important to note that the results on which these guidelines are based
are a�ected by the minutia extraction and point matching algorithms. There-
fore, for point matching algorithms that are not a�ected by nonlinear distor-
tion and/or do not produce comparisons with high levels of local inter-class
similarity, these guidelines need to be changed.

The next step is to consider possible problems associated with the above-
mentioned guidelines. Firstly, the local similarity forms an important part
of the best similarity score calculation methods, but achieves a low accuracy
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when implemented in a stand-alone fashion on the FVC2004 databases. The
hypothesis is that the method proposed by Cappelli et al. (2010b) is highly
sensitive to noise which may cause an increase in EER. However, there are
many ways to calculate the local similarity between two minutia points. Dif-
ferent strategies for calculating the local similarity is therefore compared in
Chapter 5.

Furthermore, the results in this chapter indicate that the structural simi-
larity is robust to noise, but is also sensitive to nonlinear distortion, while the
percentage of paired minutia points is slightly robust to nonlinear distortion,
but also sensitive to noise. Therefore, if these two similarity scores can be
combined in order to capture the strengths of both methods, the performance
may be improved. Chapter 6 therefore investigates the combination of di�erent
improved similarity score calculation methods in such a way that training is
not required.

In summary, this chapter provided some basic guidelines for calculating a
similarity score. Furthermore, it explained the weaknesses and strengths of
the best existing similarity scores and how these are a�ected by intra-class
variations and inter-class similarities. These results demonstrated that no sin-
gle existing similarity score is superior to all the others, since the performance
depends on the database being considered. However, it appears that simi-
larity score calculation methods that combine the local similarity with either
the structural similarity or the percentage of paired minutia points, and then
combine either of these results with a penalization factor to account for local
inter-class similarity produce the best EER, FNMRzero, and FMRzero, since
these strategies appear to be more robust with respect to noise and nonlinear
distortion.
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Chapter 5

Comparing local similarity score

calculation methods

5.1 Introduction

Local similarity score calculation forms an integral part of any accurate minutia-
based similarity score calculation method. This is clear from the results pre-
sented in Chapter 4 where the best performing similarity score calculation
methods combine the local similarity score calculation method with either the
percentage of paired minutia points or the structural similarity score calcu-
lation method. The explanation for these results (as detailed in Chapter 4)
is that the local similarity measure deals well with global inter-class similar-
ity. However, these results also show that, on an individual basis, the Minutia
Cylinder Code (MCC), i.e. local similarity score calculation method S2, does
not perform the best on the FVC2002 �ngerprint databases and performs the
worst on the FVC2004 �ngerprint databases based on the equal error rate
(EER), since it is highly sensitive to noise. Consequently, improving the lo-
cal similarity score calculation method may have a signi�cant impact on the
performance of the best available similarity score calculation methods.

Local similarity score calculation involves two stages: (1) the computation
of the local similarity values and (2) the combination of the local similarity
values for a number of paired minutia points in order to obtain the �nal local
similarity score. The local similarity value computed during stage 1 represents
the degree of similarity between two minutia points from di�erent sets based
on the feature di�erences between their neighbouring minutia points. During
stage 2, the pairs of minutia points between the two sets are either identi�ed
through an assignment-based method which is implemented on the local simi-
larity matrix or by employing a tolerance box on the aligned minutia sets. The
local similarity between these identi�ed paired minutia points may then be av-
eraged in order to obtain the �nal local similarity score. For a more detailed
explanation of the two stages relevant to local similarity score calculation, see
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Section 2.2.2.
There are several di�erent approaches to implementing the above two stages

in such a way that the approach is robust with respect to noise. During
stage 1, the neighbouring minutia points can be paired either by applying
thresholds as proposed by Jain et al. (2008), or by considering their distance
from, or orientation with respect to the reference minutia points as proposed
by Jiang and Yau (2000). Both of these approaches may be more robust with
respect to noise than is the case for the MCC-based local similarity measure.
Furthermore, most approaches employ a tolerance box-based approach during
stage 2 to identify the paired minutia points, which is also more robust with
respect to noise as is the cause when a �xed number of the best minutia pairs
are chosen. Alternatively, these di�erent strategies being employed during
stage 1 may be combined with stage 2 by implementing a tolerance box-based
approach.

No existing studies in the current literature compare di�erent strategies
during stage 1 and/or stage 2 of local similarity score calculation. Studies
such as the one conducted by Peralta et al. (2015) compare di�erent local
minutia-based matching methods. These methods focus more on comparing
the point matching capabilities of local descriptors than on how accurate they
are in distinguishing between genuine and impostor comparisons during the
similarity score calculation stage.

The testing in this chapter therefore focuses on two questions. The �rst
question is as follows: Which method best calculates the local similarity be-
tween two descriptors? This question is investigated by considering the sim-
ilarity between descriptors based on the similarity of neighbouring minutia
pairs and the percentage of paired neighbouring minutia points. However, we
also consider the average neighbouring similarity between di�erent numbers of
pairs in order to gauge the e�ect of noise and investigate distinctiveness.

The second question is as follows: How many minutia pairs between the two
sets' local similarity have to be averaged in order to obtain an accurate local
similarity score? Is it better to consider all the minutia pairs, which may be
sensitive with respect to noise, but also capture the dissimilarity for impostor
comparisons, or is it better to only use a small subset of minutia pairs, which
is robust with respect to noise, but is not particularly distinctive? Finally, how
does the performance of a threshold-based approach to choosing the number
of paired minutia points compare to the assignment-based approach?

The rest of this chapter is divided into �ve sections, where Section 5.2
provides an overview of the methodology. In Section 5.3 a new descriptor is
created to investigate the adoption of the di�erent strategies during stage 1
and to suggest and investigate certain improvements such as increasing the
robustness with respect to noise for the local similarity calculations. Section
5.4 details the di�erent strategies utilised during stage 2, while the results are
presented in Section 5.5. A discussion and conclusion based on these results
are �nally presented in Section 5.6.
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5.2 Methodology

The core of the methodology lies in the comparison of the performance of local
similarity score calculation methods utilising di�erent strategies during stage
1 and 2. These local similarity score calculation methods are implemented
on six databases (the databases labelled �A� from FVC2002 and FVC2004)
with the testing protocol and preprocessing procedures as described in Chap-
ter 3. However, for all the local similarity scores that require an assignment
approach for identifying the paired minutia points, only the pairs within the
overlap are considered in the assignment matrix. A more detailed explanation
of the individual local similarity calculation methods and descriptors are pro-
vided in Section 5.3, while Section 5.4 provides an overview of the strategies
employed during stage 2. The parameters used in the proposed local similarity
score calculation methods are listed in Table 5.1. However, these parameters
are speci�cally for �ngerprint images captured at 500 dpi and needed to be
adjusted for �ngerprint captured at di�erent a resolution. After the similarity
score values have been calculated for all the comparisons, the EER and area
under the Receiver Operating Characteristic Curve (AUC) are employed as
performance measures for each variant of the local similarity score. These per-
formance measures are subsequently compared for all the di�erent variations of
local similarity score calculation methods in order to determine which method
is the most pro�cient. The �nal part of this protocol involves the determi-
nation as to whether the best performing local similarity measure performs
signi�cantly better than the MCC-based local similarity. For this purpose, the
dependent (paired) t-statistic is implemented by considering the EER at a 0.05
level of signi�cance.

Table 5.1: The parameters for the local similarity algorithm.

Parameter Value
Λ 90.0 pixels
ω 1.2 radians
ερd 6.0
τ ρd −1.2
ερδ 0.15
τ ρδ −20.0
ερφ 0.15
τ ρφ −20.0
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5.3 Stage 1: Local similarity computation

The proposed local similarity algorithm as employed during the �rst stage
involves two steps. Section 5.3.1 details the �rst step, namely the creation of
the descriptors, while Section 5.3.2 elaborates on the second step, namely the
process of comparing two descriptors. Section 5.3.2.1 outlines the advantages
and disadvantages of this algorithm and elaborates on how it di�ers from
existing local similarity calculation methods.

5.3.1 Local valid sector descriptor

We propose a �xed radius descriptor that is robust with respect to partial
overlapping sets and includes the neighbouring minutia points within a radius
of Λ. Each descriptor is divided into 24 sectors as demonstrated in Figure 5.1.
They involve eight orientation sectors of equal size and three radial sectors
at radial distances of 40.0, 70.0 and 90.0 pixels (speci�cally for �ngerprint
images at 500 dpi). These sectors are numbered based on their orientation and
distance from the reference minutia point. Test points are considered within
each sector in order to determine whether there is a common region between
the sector in question and the convex hull associated with the reference minutia
point. Should this be the case, the sector is labelled as valid. This method
subsequently assigns this sector number to each neighbouring minutia point
that falls within said sector.

Figure 5.1: A descriptor divided into sectors in order to deal with partial
overlapping descriptors.

In addition to this, three features are associated with each of the neigh-
bouring minutia points, i.e. d, β and φ, as illustrated in Figure 2.2. These
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three translation and rotation invariant features accurately capture the spatial
and orientation characteristics of each neighbouring minutia point relative to
the reference minutia point. In addition to these features, other methods may
also use δ, as illustrated in Figure 2.2, but since β, φ and δ form a triangle,
only two of them are required to capture the necessary information. The �nal
proposed descriptor therefore includes the neighbouring minutia points of the
above-mentioned three features, the sector number assigned to each neighbour-
ing minutia point, the numbers of the valid sectors, as well as the orientation
of the reference minutia point.

5.3.2 Comparing two local descriptors

In order to be compared, two descriptors have to satisfy the following two
criteria. Firstly, the orientation di�erences between the two reference minu-
tia points must be less than a predetermined threshold, ω. Secondly, in both
descriptors at least one neighbouring minutia point must be matchable. All
the neighbouring minutia points that fall within sectors that are valid in both
descriptors are deemed matchable neighbouring minutia points as indicated in
Figures 5.2 (a) and 5.2 (b). If these two conditions are met, the two descrip-
tors are compared, otherwise the local similarity is assigned a value of zero.

The proposed approach calculates a neighbouring similarity, Snm

(
Mik ,Mi′

k′

)
,

between each pair of matchable neighbouring minutia points as follows,

Snm

(
Mik ,Mi′

k′

)
=

{
ρ(i, i′), if sectors are matchable

0, otherwise
,

where Mik and Mi′
k′

represent the neighbouring minutia points i and i′ in
descriptors of the references minutia points Mk and Mk′ within sets T and
Q respectively. Furthermore, ρ(i, i′) denotes the geometric mean of the three
normalized feature di�erences between the two neighbouring minutia points
associated with the two descriptors,

ρ(i, i′) = 3

√
Π3
s=1κ(Ds, ε

ρ
s, τ

ρ
s )

D1 =| dki − dk′i′ |,
D2 =| dΘ (δki, δk′i′) |,
D3 =| dΘ (φki, φk′i′) |,

where d, δ and φ are the features illustrated in Figure 2.2, ε and τ represent
normalization constants for the symmetrical sigmoid normalization function
κ, and dΘ denotes the angle di�erence function as de�ned in Equation 2.17.
This results in a similarity matrix that contains the neighbouring minutiae.
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(a) FVC2002 Db1_a: Individual 69, impression 2.

(b) FVC2002 Db1_a: Individual 69, impression 5.

Figure 5.2: Example of the comparison of two partial overlapping sets using
the descriptor explained in Figure 5.1.
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The neighbouring minutia pairs between descriptors that are required to
calculate the �nal local similarity through di�erent strategies may be identi�ed
in two ways: The �rst method involves the assignment-based approach where
the LGS assignment algorithm is applied to the neighbouring minutia simi-
larity matrix, which results in a unique list containing the maximum number
of neighbouring minutia pairs between the descriptors. The second method
involves a threshold-based approach where thresholds are applied to the three
feature di�erences in order to determine which neighbouring minutia points
between two descriptors are paired.

In order to investigate the protocol outlined above, the local similarity is
calculated using the following six di�erent strategies during stage 1:

1. The �rst strategy averages the similarity of the neighbouring minutia
points across all the neighbouring minutia pairs within the list obtained
through the assignment-based approach.

2. The second strategy averages the similarity of the neighbouring minutia
points of 75% of the neighbouring minutia pairs associated with the
highest similarity within the list obtained through the assignment-based
approach.

3. The third strategy averages the similarity of the neighbouring minutia
points of the three most similar neighbouring minutia points within the
list obtained through the assignment-based approach.

4. The fourth strategy calculates the percentage of paired neighbouring
minutia points by employing a threshold-based approach.

5. The �fth strategy combines the percentage of paired neighbouring minu-
tia points with the neighbouring similarity between these pairs.

6. The sixth strategy uses the MCC-based local similarity, as outlined in
Chapter 2.

The assignment-based and threshold-based (or tolerance box-based) approaches
are brie�y explained in Section 3.5. In this scenario however, these approaches
are only implemented on the neighbouring minutiae between descriptors.

5.3.2.1 Advantages and disadvantages

The proposed local similarity algorithm has a few advantages that distinguish
it from other algorithms, since it proposes to combine the strengths of several
di�erent algorithms. Firstly, it is robust with respect to partial overlap, as is
also the case for Jain et al. (2008) (without alignment), since it constitutes an
adjusted version of the local descriptor employed by Cappelli et al. (2010a),
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which determines the common region with valid sectors in both descriptors.
However, the sector-based approach proposed by Cappelli et al. (2010a) is sen-
sitive to noise. Our approach therefore only considers a valid sector in order
to determine which neighbouring minutia points are matchable, but still com-
pares individual neighbouring minutia points in a similar way to Jain et al.
(2008) and Jiang and Yau (2000). In addition to this, the proposed approach
assigns the neighbouring minutia points being paired either through thresh-
olds (as proposed by Jain et al. (2008)) or by using an assignment method (as
proposed Fu et al. (2013)), which also makes it more robust with respect to
noise than is the case for Jiang and Yau (2000). As opposed to Jiang and Yau
(2000), the assignment is not only performed for the closest or best pairs, but
for all the possible neighbouring minutia pairs which increases the distinctive-
ness of the proposed approach. Finally, although our approach is very similar
to the approach followed by Fu et al. (2013), it incorporates a di�erent strategy
for computing the similarity of neighbouring minutia points. This is achieved
by assigning neighbouring minutia pairs and allowing for di�erent strategies
for computing the local similarity, which is not the case for Fu et al. (2013)
and Cappelli et al. (2010a). The proposed algorithm is therefore, to a certain
extent, robust with respect to partial overlap and high noise levels, as well as
variations in translation and rotation, but still highly distinctive, while also
allowing for di�erent strategies for computing the local similarity.

On the other hand, this way of computing the local similarity may have
a few drawbacks. The e�ectiveness with which it deals with partial overlap
depends on the size of the sectors, and one of the relatively large sectors we
propose here may contain minutia points that are only present in one of the sets
due to partial overlap, as is the case for sector 23 in Figure 5.2. This problem
may be solved to a certain extent by increasing the number of sectors, but may
have the following adverse e�ect: The utilisation of sectors may lead to border
errors and when the number of sectors is increased, the number of border
errors may increase as well. Border errors are matching minutia points from
two compared descriptors that fall in di�erent sectors and these are usually
the result of nonlinear distortion or minutia extraction position errors. The
impact of nonlinear distortion is usually small, since we only consider local
regions, but minutia extraction position errors may still be problematic.

5.4 Stage 2: Local similarity combination

Section 5.3 elaborated on the di�erent strategies proposed for computing the
local similarity between two minutia points that form a pair. However, in
order to calculate the �nal local similarity score, these similarities have to
be averaged for a �xed number of minutia pairs. We explained in Section 5.3
that, during preprocessing, two di�erent methods are utilized to determine the
paired minutia points. This section provides a short description of how the
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list of �ve di�erent pairs of minutia points (as obtained through di�erent stage
2 strategies) is constructed from two lists containing uniquely paired minutia
points.

Strategy 1 of stage 2 uses the complete list of paired minutia points as
identi�ed with the tolerance box-based approach, whereas strategies 2-5 of stage
2 use the list of paired minutia points as identi�ed with the assignment-based
approach. Strategy 2 uses all the paired minutia points in the overlapping
region, strategy 3 uses the most similar pairs in the overlapping region as
obtained through the formula proposed by Cappelli et al. (2010a), strategy 4
uses 75% of the most similar pairs in the overlapping region, and strategy 5
uses the three most similar pairs in the overlapping region.

Although strategy 1 of stage 2 may be more robust with respect to nonlinear
distortion, it is more sensitive to noise than the other strategies, since it is
captures the best pairs based on spatial position and orientation. Strategy
2 (that incorporates all the minutia points in the overlapping region) may be
sensitive to noise, but best captures the dissimilarity for impostor comparisons.
Furthermore, strategy 5 should be more robust with respect to noise, but not
very distinctive. Strategies 3 and 4 aim to �nd a balance between robustness
with respect to noise and capturing the dissimilarity for impostor comparisons.

5.5 Results

The results in Tables 5.2 and 5.3 indicate that no single combination of stage
1 and stage 2 strategies outperforms all the other combinations for all six
databases, however the results do point towards individual stage 1 and stage 2
strategies that generally perform better across all six databases. We therefore
start out by �rst considering the EER of each stage 1 strategy for all the stage
2 strategies, and then proceed to consider the EER of each stage 2 strategy for
all the stage 1 strategies. We �nally consider the area under the ROC curve
(AUC) for the combination of these strategies.

The �ve di�erent stage 2 strategies across all six databases result in a total
of 30 scenarios for which each of the di�erent stage 1 strategies are compared.
For 21 of these 30 scenarios strategy 1 of stage 1 has the lowest EER. The
other stage 1 strategies that produce the lowest EERs for speci�c databases are
strategies 2, 4 and 6. Strategies 4 and 6 do however not perform consistently
and may produce high EERs in certain scenarios, speci�cally when strategy 6
is implemented on the FVC2004 DB2_A database. Therefore, across all six
databases, strategy 1 of stage 1 generally produces the lowest EERs.

When considering the EERs for the di�erent stage 2 strategies, strategies
3 and 4 produce the lowest EERs for most of the local similarities. However,
there are scenarios for which strategies 1,2 and 5 have the lowest EER. When
strategy 1 of stage 1 is considered, the results indicate that in two of the
databases, strategy 1, 3 and 4 of stage 2 produce the lowest EER. On the other
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Table 5.2: The EER for the six di�erent databases. The best three perfor-
mances for each database are in boldface, while the best strategy followed
during stage 1 for each stage 2 strategy is boxed.

Stage 2 Stage 1 strategy:
strategy: 1 2 3 4 5 6

FVC2002 DB1_A

1 0.8380 0.9043 2.2165 1.1694 1.4267 0.7515

2 0.5707 0.6369 1.1515 0.6571 1.2840 0.6830

3 0.4763 0.5987 1.4368 0.7234 0.9021 0.7796

4 0.4662 0.4662 1.0088 0.5426 0.8200 0.7032

5 0.7133 0.8279 2.2367 1.2278 2.1366 0.6953
FVC2002 DB2_A

1 0.7334 0.7233 2.6620 1.2298 1.9150 1.0165

2 0.4279 0.5806 1.4747 0.7615 2.5620 0.9243

3 0.3897 0.5043 1.3984 0.8177 1.9690 0.5908

4 0.3515 0.4481 1.5511 0.7233 2.3868 0.7817

5 0.9322 1.1995 2.8608 1.8241 3.8098 0.6851
FVC2002 DB3_A

1 1.5807 1.5897 4.8819 2.4627 3.5101 3.1163

2 1.8827 2.0450 4.1922 1.9834 3.0007 3.3989

3 1.4079 1.6107 3.0998 1.8947 3.1284 2.3500

4 1.6002 1.6919 3.5972 1.7415 2.6175 2.9075

5 1.5296 1.6919 4.1922 2.2373 4.1682 2.6400
FVC2004 DB1_A

1 4.6436 4.6725 8.2436 6.4674 7.2562 4.8378

2 4.7028 4.7418 5.8236 5.2989 6.1679 6.0841

3 3.4224 3.4823 4.5231 4.8709 5.4945 3.5704

4 3.4628 3.4332 4.6819 4.4451 5.0356 4.4364

5 4.0777 4.1766 7.0333 6.2401 7.3147 3.3258
FVC2004 DB2_A

1 3.3951 3.5261 7.0118 4.1305 4.8865 5.8532

2 5.4805 5.6718 7.0623 4.9163 6.1154 7.4546

3 3.4656 3.5663 5.2892 3.7577 5.0070 4.4730

4 3.9391 4.0095 6.2462 3.9391 4.9871 6.2463

5 4.0196 4.0097 6.1455 4.7954 6.8204 4.6643
FVC2004 DB3_A

1 3.1855 3.3263 6.6643 4.8061 5.4682 5.3401

2 4.9647 5.1433 8.0418 4.9352 5.9184 6.6681

3 3.2617 3.3146 5.5594 3.4787 4.3750 4.3750

4 3.6222 3.6428 6.5118 3.6573 4.1268 4.9413

5 3.6222 3.7747 6.1747 4.7505 6.1107 4.1702
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Table 5.3: The AUC for the six di�erent databases. The best three perfor-
mances for each database are in boldface, while the best strategy followed
during stage 1 for each stage 2 strategy is boxed.

Stage 2 Stage 1 strategy:
strategy: 1 2 3 4 5 6

FVC2002 DB1_A

1 0.9994 0.9991 0.9966 0.9986 0.9973 0.9995

2 0.9997 0.9997 0.9991 0.9995 0.9978 0.9989

3 0.9998 0.9996 0.9985 0.9997 0.9979 0.9984

4 0.9998 0.9997 0.9992 0.9995 0.9986 0.9993

5 0.9996 0.9993 0.9970 0.9992 0.9961 0.9992
FVC2002 DB2_A

1 0.9995 0.9992 0.9965 0.9989 0.9967 0.9993

2 0.9997 0.9997 0.9989 0.9992 0.9954 0.9991

3 0.9998 0.9998 0.9991 0.9991 0.9933 0.9991

4 0.9998 0.9998 0.9989 0.9994 0.9961 0.9995

5 0.9992 0.9991 0.9968 0.9977 0.9886 0.9990
FVC2002 DB3_A

1 0.9983 0.9978 0.9898 0.9962 0.9916 0.9939

2 0.9977 0.9976 0.9914 0.9977 0.9931 0.9903

3 0.9989 0.9988 0.9941 0.9974 0.9929 0.9959

4 0.9985 0.9985 0.9941 0.9981 0.9948 0.9946

5 0.9985 0.9985 0.9916 0.9967 0.9903 0.9946
FVC2004 DB1_A

1 0.9924 0.9915 0.9759 0.9843 0.9803 0.9913

2 0.9926 0.9921 0.9876 0.9889 0.9830 0.9823

3 0.9953 0.9950 0.9919 0.9902 0.9862 0.9931

4 0.9957 0.9955 0.9914 0.9919 0.9880 0.9893

5 0.993402 0.9931 0.9837 0.9850 0.9782 0.9940
FVC2004 DB2_A

1 0.9947 0.9941 0.9821 0.9919 0.9877 0.9877

2 0.9900 0.9892 0.9817 0.9906 0.9828 0.9759

3 0.9956 0.9953 0.9909 0.9937 0.9869 0.9892

4 0.9938 0.9935 0.9870 0.9927 0.9873 0.9833

5 0.9933 0.9930 0.9860 0.9899 0.9791 0.9875
FVC2004 DB3_A

1 0.9958 0.9953 0.9818 0.9910 0.9863 0.9896

2 0.9915 0.9911 0.9773 0.9909 0.9822 0.9815

3 0.9953 0.9952 0.9884 0.9946 0.9887 0.9920

4 0.9944 0.9943 0.9847 0.9939 0.9896 0.9892

5 0.9940 0.9938 0.9859 0.9901 0.9807 0.9917
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hand, strategy 2 of stage 2 invariably produces high EERs when implemented
on the FVC2002 and FVC2004 �ngerprint databases.

The AUC-based results are similar to those for the EERs. All the algo-
rithms with the lowest AUC involve strategy 1 of stage 1, except for a single
case that involves strategy 6. Strategy 4 of stage 1 produced the largest AUC
in four of the six databases, while strategy 1 and 4 of stage 2 both produced
the largest AUC in one of the six databases. The AUC for strategies 3 and
4 of stage 2 do however di�er slightly. Furthermore, smaller EERs and larger
AUCs are generally observed for the FVC2002 �ngerprint databases than is
the case for the FVC2004 databases.

In summary, these results do not point towards a single algorithm that per-
forms best for all the EER-based and AUC-based performance metrics when
estimated by considering the databases in question. The algorithm that pro-
duces the lowest EERs across all the databases combines strategy 1 of stage 1
with strategy 3 of stage 2, however, all the di�erent variations of stage 1 and
stage 2 produce much higher error rates when implemented on the FVC2004
�ngerprint databases than is the case for the FVC2002 �ngerprint databases.

5.5.1 Statistical signi�cance testing

A better EER is reported when strategy 1 of stage 1 is implemented instead
of strategy 6 of stage 1. A statistical signi�cance test should therefore be
conducted to investigate the signi�cance of this improvement. In this study
a dependent (paired) t-statistic for a 0.05 level of signi�cance, as outlined by
Dowdy et al. (2011), is applied. This test determines the likelihood that local
parameters of two dependent, normally distributed data samples A and B are
representative of two populations with unequal means. The following steps are
followed:

1. In our case samples A and B are the sets of EER-based performance
measures obtained from two di�erent local similarity score calculation
methods. The expected improvement from using similarity score calcu-
lation method A, instead of B, is as follows,

µAB = µ(A)− µ(B), (5.1)

where µAB represents the di�erence between the sample means. Fur-
thermore, let µA and µB denote the population means associated with
samples A and B respectively.

2. (Hypothesis statement) The two hypotheses tested are:

� (Null Hypothesis, H0) µA − µB ≤ 0;

� (Alternative Hypothesis, HA) µA − µB > 0.
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As we are only interested in whether strategy 1 of stage 1 has a smaller
EER than strategy 6 of stage 1, a right-tailed is used.

3. The formula for the test statistic tstat is as follows,

tstat =
µAB − µ0

sds
√
n
, (5.2)

where µAB and sd represent the mean and standard deviation of the dif-
ferences between the paired samples respectively, while n is the number
of samples.

4. (Decision) At an α = 0.05 level of signi�cance the test statistic must
exceed the associated critical value tcrit for the null hypothesis to be
rejected, i.e.

tstat > tcrit (5.3)

= t(α,n−1) (5.4)

= t(0.05,2) (5.5)

= 2.920. (5.6)

Consequently, if tstat > 2.92, we can con�rm that method A results in a
higher performing local similarity score calculation method than is the
case for method B.

This statistical signi�cance test can be conducted for any two stage 1 strategies,
while keeping the preprocessing and stage 2 strategy the same. However, we
are only interested in the tstat between strategy 1 of stage 1 and strategy 6 of
stage 1. The tstat values are listed in Table 5.4. For the FVC2002 �ngerprint
databases tstat < tcrit and therefore, at a signi�cance level of 0.05, we cannot
reject the null hypothesis and subsequently conclude that, based on statistical
evidence, there is not a signi�cant di�erence between the pro�ciency of these
two methods. However, for the FVC2004 �ngerprint databases tstat > tcrit,
which enables us to reject the null hypothesis and conclude that strategy 1
of stage 1 is signi�cantly more pro�cient than strategy 6 of stage 1 with a
con�dence of 95%.

Table 5.4: The tstat-values between strategy 1 of stage 1 and strategy 6 of stage
1 when evaluated on the FVC2002 and FVC2004 �ngerprint databases.

Fingerprint databases tstat
FVC2002 2.546854
FVC2004 3.030137
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5.6 Discussion and conclusion

In this chapter we compared di�erent local similarity calculation methods
(stage 1 strategies) and investigated how many paired minutia points should
be used to calculate the �nal local similarity score (stage 2 strategies). The
results did not point towards a combination of these two strategies that are
superior to all the others across all six of the databases considered. However,
when strategy 1 of stage 1 was implemented in conjunction with strategies
3 or 4 of stage 2, the lowest EERs were obtained across all the databases
considered.

The main conclusion is therefore that the proposed strategy 1 of stage
1 performs signi�cantly better than the MCC-based local similarity on the
FVC2004 �ngerprint databases (i.e. at a signi�cance level of 0.05). Although
it also produces lower EERs when implemented on the FVC2002 �ngerprint
databases, there is not su�cient evidence to conclude that this strategy gen-
erally performs signi�cantly better. The above-mentioned improvement may
however point towards the fact that the proposed algorithm is more robust
with respect to noise as is the case for the MCC-based strategy, since the
FVC2004 �ngerprint databases contain more low quality �ngerprints than is
the case for the FVC2002 �ngerprint databases (Maltoni et al., 2009), which
may result in comparisons with higher noise levels.

These results do not provide clear guidelines on how to calculate the local
similarity score, but rather point towards how a similarity score should not be
calculated: Firstly, using the similarity between the three best neighbouring
minutia points is not distinctive enough for calculating the similarity between
descriptors and can therefore not compete with methods that consider all
the neighbouring minutia points within a 90-pixel radius. It is interesting
to note that the literature states that �xed length local descriptors are not
accurate because of their sensitivity to noise (Liu and Mago, 2012; Feng, 2008).
However, these results demonstrate that even if the pairs are assigned in such a
way that they are less sensitive to noise, the use of three neighbouring minutia
points is still not distinctive enough to compare favourably with other methods.
This study therefore suggests that it is better to consider all the neighbouring
minutia points within a �xed radius than only a certain percentage of paired
minutia pairs.

Secondly, what the local similarity score calculation is concerned, this study
suggests that it is better to calculate the average of the neighbouring similarity
between all the pairs, than to use a percentage of paired neighbouring minutia
points or the MCC-based similarity. Although the performance of the proposed
method is only marginally better, cases do exist where the other two methods
perform signi�cantly worse. The proposed approach is therefore reliable in
various scenarios.

When considering how to choose the paired minutia points and how many
pairs to use, this study suggests the following. The use of all the minutia points
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(strategy 2 of stage 2) is highly sensitive to noise, which results in strategies
3 and 4 of stage 2 performing better on comparisons with low noise levels. It
is therefore, in the �rst place not necessary to include all the paired minutia
points. Secondly, the identi�cation of minutia points through a tolerance box-
based approach performs well on most databases, but produces poor results
on DB1_A of FVC2004. The second suggestion is therefore to rather use a
percentage of the minutia points within the overlapping region than to incor-
porate the tolerance box-based approach, speci�cally for the purpose of local
similarity score calculation.

In summary, this chapter proposed a new local similarity algorithm based
on descriptors that is robust to partial overlap, but still compares individual
minutia points in order to be robust with respect to noise. This method per-
forms best when the local similarity is based on the average similarity between
all the neighbouring pairs. Even though the proposed local similarity method
often performs only marginally better than other local similarity methods, it
appears to be more stable across all databases. Furthermore, when averaging
a percentage (around 50%) of the pairs in the overlap, the local similarity
proposed by Cappelli et al. (2010a) produces the best results.
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Chapter 6

Combining di�erent similarity

score calculation methods

6.1 Introduction

The results in Chapter 3 indicate that the similarity score calculation method
based on the Minutia Cylinder Code (MCC) Local Greedy Similarity with
Distortion Tolerant Relaxation (LGS_DTR) as proposed by Cappelli et al.
(2010b), i.e. S3, achieves the highest performance for most of the databases
considered. However, the performance of this method decreases for databases
containing many comparisons with high levels of intra-class variations and/or
inter-class similarities, as is the case for the FVC2004 �ngerprint databases.
Furthermore, this method does not perform the best for all the databases con-
sidered. This indicates that said similarity score calculation method is more
sensitive to speci�c intra-class variations or inter-class similarities than is the
case for some of the other similarity score calculation methods. The combi-
nation of di�erent similarity score calculation methods may therefore improve
the performance of existing similarity score calculation methods and is the
focus of the current chapter.

The research questions posed in this chapter are as follows:

� Firstly, does the combination of the three types of similarity score cal-
culation methods (as introduced in Section 2.2) improve the accuracy of
the individual similarity score calculation methods?

� Secondly, does this improved method also address intra-class variations
and inter-class similarities and therefore produce a similar performance
when implemented on the FVC2004 and FVC2002 �ngerprint databases?

� Finally, is the performance of this fused similarity score calculation
method better than that of the most pro�cient existing similarity score
calculation method, i.e. LGS_DTR?

61
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In this chapter, four di�erent similarity score calculation methods are com-
bined into a new similarity score calculation method. This study suggests that
the combined method may better address the di�erent types of intra-class
variations and inter-class similarities than is the case for existing, individual
similarity score calculation methods and may therefore be more accurate. Sec-
tion 6.2 explains the methodology, while Sections 6.3.1 and 6.3.2 elaborate
on the individual similarity score calculation methods and the fusion process
respectively. Section 6.4 presents the results and Section 6.5 provides a dis-
cussion and conclusions.

6.2 Methodology

The methods considered here are similar to those discussed in Chapter 4, but
for the fact that the similarity score calculation stage di�er. Di�erent similarity
score calculation methods are implemented on six databases with the testing
protocol and preprocessing procedures as described in Chapter 3. Section 6.3.1
explains the individual similarity score calculation methods (adjusted versions
of existing similarity scores), while section 6.3.2 elaborates on how the fusion
process that combines the four individual similarity score calculation meth-
ods, works. After the calculation of the similarity score values, the next step is
to calculate the EER, FMRzero, FNMRzero, FMR100, FMR1000, FMR10000, and
area under the Receiver Operating Characteristic Curves (AUC) as perfor-
mance measures for each similarity score calculation method on the di�erent
databases considered. These performances are then compared to those of ex-
isting similarity score calculation methods as reported in Chapter 4. Finally,
should the proposed calculation methods produce better results than exist-
ing similarity score calculation methods, the signi�cance of this improvement
is determined. In order to verify this, we implement the dependent (paired)
t-statistic at a signi�cance level of 0.05 on the EER.

6.3 Proposed similarity score calculation

method

As previously mentioned, four di�erent similarity score calculation methods
are combined in this chapter. The �rst three methods focus on the similarity
in the overlapping region, while the fourth takes the complete sets and the size
of the overlapping region into account. Section 6.3.1 elaborates on the indi-
vidual similarity score calculation methods and explains how these methods
may address di�erent types of intra-class variations and inter-class similarities.
Subsequently, Section 6.3.2 explains how the di�erent similarity score calcula-
tion methods may be fused in order to produce a variety of combined similarity
score calculation methods.
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6.3.1 Individual similarity score calculation methods

Similarity score calculation method 1, SL1

The �rst similarity score calculation method constitutes a combination of the
local and structural similarity score calculation methods. It implements the
best local similarity algorithm as established in Chapter 5 on the paired minu-
tia points (with parameters as indicated in Table 5.1). Thereafter, a slightly
adapted version of the distortion tolerant relaxation (DTR) method as pro-
posed by Cappelli et al. (2010b) is used to compute the global relaxed similarity
between the paired minutia points (with parameters as indicated in Table 6.1).
As is the case for the MCC LGS_DTR algorithm, the minutia pairs are or-
dered based on their e�ciency, after which the relaxed similarity of 60% of the
most e�cient pairs are averaged to produce the �nal similarity score value.

Table 6.1: The parameters for the DTR algorithm.

Parameter Value
εp 30.0

τp
2

5
minnp 3
maxnp 10

ερd
1

30
τ ρd −150.0

ερδ
π

4
τ ρδ −15.0

ερφ
π

18
τ ρφ −40.0

This similarity score calculation method is similar to the best performing
method, i.e. the MCC LGS_DTR method (S3), but for a few small di�erences.
Firstly, the proposed method only considers the minutia points in the overlap
in order to ensure robustness with respect to partial overlap. Secondly, the
best local similarity is used instead of the MCC LGS local similarity, which
increases robustness with respect to noise. Finally, the features are combined
using the geometric mean instead of multiplication during relaxation. This
results in a better range of similarity score values that can be more easily
combined during the fusion stage.

However, the fact that only a percentage of the possible minutia pairs in the
overlap is considered (to increase robustness with respect to noise) may have
certain disadvantages. Firstly, this approach may be sensitive to extreme cases
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of local and global inter-class similarities. Furthermore, nonlinear distortion
may still a�ect this similarity score calculation method, in which case other
similarity score calculation methods may be required.

Similarity score calculation method 2, SL2

The second method is a local similarity score calculation method. Similar
to the �rst method, it calculates the local similarity with the most accurate
method established in Chapter 5 for the list of paired minutia points from the
overlap using the assignment approach (with parameters as indicated in Table
5.1). It subsequently averages said local similarity for 90% of the most similar
pairs as identi�ed by the point similarity algorithm in order to obtain the local
similarity score value. This method (SL2) is more robust to nonlinear distortion
than is the case for the �rst method (SL1), since it only considers local regions,
provides the similarity between di�erent pairs, and does not rearrange the list
according to e�ciency. This method is however not as distinctive as the �rst
method, since it only considers local regions within the overlap and is therefore
still sensitive to local inter-class similarity.

Note that both of these �rst two similarity score calculation methods there-
fore incorporate only a percentage of the possible paired minutia points within
the overlap. The second approach (SL2) furthermore determines the paired
minutia points using the local similarity, after which the similarity score value
is calculated. This implies that it uses the most similar local minutia pairs and
therefore does not capture the true dissimilarity. Global inter-class similarity
may therefore still adversely a�ect the pro�ciency of these approaches.

Similarity score calculation method 3, SL3

This method is similar to the similarity score calculation method proposed by
Fu et al. (2013). It identi�es the number of paired minutia points between two
sets using a tolerance box-based approach, as well as the number of minutia
points in the overlapping region, for each set. Thereafter, it calculates the best
proposed local similarity, Slocaln , for each pair of minutia points as established
in Chapter 5 (with parameters as indicated in Table 5.1). The �nal local
similarity is as follows,

S3 =
Nm.Slocaln

(NTO +NQO)/2
, (6.1)

with Nm, NTO, and NQO as de�ned in Chapter 2. Slocaln is the mean local
similarity value for all the identi�ed pairs of minutia points.

This approach therefore constitutes a combination of a �percentage of
paired minutia points�-based similarity score calculation method and a lo-
cal similarity score calculation method. The �percentage of paired minutia
points�-based similarity score calculation method considers the entire overlap-
ping region and therefore addresses global inter-class similarity to a certain
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degree. This method should however be sensitive to noise and extreme levels
of nonlinear distortion, while also being robust to extraction position errors,
due to the implementation of the tolerance box-based approach for identifying
paired minutia points. The local similarity of the pairs is incorporated in order
to increase the distinctiveness of the method and may also capture di�erent
local similarity values, since it identi�es the pairs of the minutia points in a
di�erent way. This method should however not replace similarity score calcu-
lation method SL2, since it identi�es fewer pairs of minutia points for impostor
comparisons, and may (in some cases) not adequately capture the dissimilar-
ity. Since this similarity score calculation method (SL3) only considers the
overlapping region (as is the case for methods SL1 and SL2), it should not be
robust to inter-class similarity.

Similarity score calculation method 4, SL4

We �nally employed the similarity score calculation method proposed by Khany-
ile et al. (2014). This method deals with local inter-class similarity, since it
penalizes comparisons with a low percentage of minutia points in the overlap.
This method may be sensitive to noise, nonlinear distortion, partial overlap,
and global inter-class similarity, but addresses the main problem that the other
three similarity score calculation methods do not address properly, namely lo-
cal inter-class similarity.

6.3.2 Similarity score fusion

The four di�erent individual similarity score calculation methods deal with
di�erent intra-class variations and inter-class similarities, but may be sensitive
to all of the di�erent intra-class variations and inter-class similarities when
combined. Furthermore, some of the individual similarity score calculation
methods perform signi�cantly worse than the highest performing one. When
said similarity score values are combined with a geometric mean, both of these
factors may result in a lower performance by the combined method when com-
pared to the best-performing individual method. We therefore implement a
fusion technique for each similarity score calculation method that only focuses
on combining the similarity score values of comparisons that have a high cer-
tainty of being either a genuine or impostor comparison.

We now explain what is meant by a comparison with a high certainty of
being either a genuine or an impostor comparison. When the distribution of
similarity score values for genuine and impostor comparisons are plotted on
the same graph, three di�erent score ranges are often observed as illustrated in
Figure 6.1. Range 1 mostly contains impostor comparisons, range 2 contains
genuine and impostor comparisons, while range 3 mostly contains genuine
comparisons. Comparisons within ranges 1 and 3 can therefore be labelled as
impostor and genuine comparisons respectively, with a high certainty.
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Figure 6.1: Illustration of the three similarity score ranges.

These ranges may however vary between di�erent similarity score calcula-
tion methods. The reason for this is that the probability distributions depend
on the features and normalization strategy utilised during similarity score cal-
culation. Furthermore, these ranges may vary between di�erent databases.
When a database is associated with high levels of intra-class variation (of
a speci�c type), range 2 (the overlapping, uncertain region) will spread out
towards the left. Similarly, when a database is associated with high levels of
inter-class similarity (of a speci�c type), the overlapping (uncertain) region will
spread out towards the right. However, for a speci�c similarity score calcula-
tion method these ranges will not change signi�cantly for a speci�c database
as long as the preprocessing strategy is successful.

The fusion method depends on the ranges speci�ed in Table 6.2 and involves
two stages. The most accurate of the four similarity score calculation methods
is �rst identi�ed and the similarity score value of the comparisons is set to
this best value. In this study we use similarity score calculation method SL1.
The other three similarity score values are then iteratively compared to each
individual similarity score calculation method's certainty ranges, and should
the similarity score values fall within their own speci�ed range labelled �1� or
�3� it is combined (using a geometric mean) with the current similarity score
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Table 6.2: Certainty range limits for di�erent similarity score calculation meth-
ods.

Similarity score Upper limit Lower limit
calculation method of range 1 of range 3
SL1 0.15 0.25
SL2 0.15 0.35
SL3 0.05 0.25
SL4 0.15 0.35

value between the comparisons. The utilised certainty ranges are speci�ed in
Table 6.2. On the other hand, should the similarity score value of a speci�c
secondary calculation method fall within its own range labelled �2�, then the
current similarity score value is retained for the similarity score calculation
method in question.

We now explain how this fusion approach may improve the performance of
a similarity score calculation method. The idea is that, since these di�erent
individual similarity score calculation methods capture di�erent similarities
and are sensitive to di�erent types of intra-class variations and inter-class
similarities, the same comparisons may not necessarily fall within the same
range for di�erent similarity score calculation methods. It is therefore possible
that the best similarity score calculation method may be uncertain about the
legitimacy of a speci�c comparison, while one of the other similarity score
calculation methods may be more certain about the outcome. In this case
said fusion strategy may improve the certainty by increasing the similarity
score of genuine comparisons or decreasing the similarity score for impostor
comparisons, and therefore improve its accuracy. On the other hand, if both
similarity score calculation methods have a high certainty that a comparison is
either a genuine or impostor comparison, the fusion strategy will not decrease
the accuracy. This approach is however only e�ective when the similarity score
calculation methods being fused have similar ranges and even then it may still
not produce optimal fusion results.

Density fusion approaches are based on the same principle, except for the
fact that they consider all the di�erent score values and not only the three
speci�ed ranges. This study is however limited to methods that do not require
intensive training in order to determine the speci�c class-conditional density
function for each of the di�erent similarity scores. We therefore opted to ob-
tain the similarity score values that have similar overlapping regions (through
normalization techniques), and then use �xed thresholds for these regions in
order to perform the fusion. This fusion strategy may not lead to a signi�cant
improvement in performance, but may still reduce the similarity score values
for those inter-class similarities that speci�c similarity score calculation meth-
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ods are sensitive to. These similarities include the local inter-class similarity,
for which lower false match rates (FMRs) may be produced, which may in turn
lead to an increase in accuracy.

6.4 Results and �ndings

The results are presented in Tables 6.3, 6.4, and 6.5. The main observations
are as follows:

1. For �ve of the six databases the fused similarity score calculation method,
SC , has a lower EER than the seven existing similarity score calculation
methods (S1-S7). The EER for SC is marginally better than the EER
for S3, i.e. the method proposed by Cappelli et al. (2010b), when imple-
mented on the above-mentioned �ve databases.

2. The FNMRzero for the proposed algorithm (SC) is considerably lower
than that for the existing seven similarity score calculation methods for
all six databases.

3. SC produces lower EERs than the individual improved similarity scores
calculation methods (SL1- SL4) on �ve of the six databases.

4. SC generally produces lower error rates (EER, FMR, and FNMR) for
the FVC2002 �ngerprint databases than is the case for the FVC2004
�ngerprint databases.

5. SL1 and SL3 produce lower EERs than most of the existing similarity score
calculation methods (S1-S7) when implemented on both the FVC2002
and FVC2004 �ngerprint databases, while SL2 produces lower EERs than
most of the existing similarity score calculation methods (S1 - S7) when
implemented on the FVC2002 �ngerprint databases.

6. The AUC indicates a similar level of performance by the di�erent simi-
larity score calculation methods across all the databases.

6.4.1 Statistical signi�cance testing

The EER for SC is better than that for the best existing similarity score (S3)
and also better than that for the best improved similarity score when imple-
mented on a speci�c database. A statistical signi�cance test is therefore con-
ducted to investigate the signi�cance of this improvement in pro�ciency. The
same statistical signi�cance test and protocol as explained in Section 5.5.1
are again implemented here in order to determine the signi�cance of above-
mentioned improvements in pro�ciency, �rst for SC and best improved similar-
ity score (on each database), and then for SC and S3.
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Table 6.3: The performance measures on the FVC2002 �ngerprint databases.

Score EER FNMRzero FMRzero FMR100 FMR1000 FMR10000

methods

FVC2002 DB1_A
SC 0.18 0.93 0.68 0.0 0.25 0.50
SL1 0.17 0.84 7.05 0.0 0.32 0.76
SL2 0.36 2.67 10.33 0.14 0.97 10.22
SL3 0.30 1.84 18.89 0.07 1.58 3.56
S1 0.47 9.88 3.99 0.36 1.30 2.95
S2 0.73 65.96 2.20 0.65 1.44 2.09
S3 0.47 38.26 1.76 0.40 0.86 1.12
S4 2.23 41.70 13.57 3.09 8.71 10.80
S5 0.43 7.52 9.86 0.32 2.66 9.46
S6/SL4 1.92 41.27 12.49 2.91 7.30 9.32
S7 0.76 14.95 52.21 0.61 13.06 40.55

FVC2002 DB2_A
SC 0.14 1.88 0.47 0.04 0.18 0.32
SL1 0.22 2.63 7.19 0.04 0.50 3.02
SL2 0.41 26.42 5.58 0.18 1.12 4.17
SL3 0.36 2.79 3.67 0.11 0.72 1.51
S1 0.64 17.64 2.66 0.50 1.37 1.69
S2 0.74 76.55 10.61 0.68 2.01 4.71
S3 0.36 11.11 1.12 0.18 0.68 0.94
S4 1.64 33.43 12.45 2.01 4.64 6.22
S5 0.53 16.85 3.78 0.32 1.73 2.88
S6/SL4 1.39 32.73 11.22 1.51 3.96 5.40
S7 0.83 22.73 13.78 0.68 3.52 5.40

FVC2002 DB3_A
SC 0.65 14.71 47.62 0.59 3.00 16.48
SL1 0.96 13.76 86.13 0.94 7.23 43.44
SL2 1.45 24.36 31.99 1.80 5.59 11.45
SL3 0.76 7.32 64.38 0.35 6.05 13.36
S1 1.45 25.08 13.32 2.19 7.81 12.66
S2 2.63 96.76 13.71 3.83 6.99 11.52
S3 1.36 38.21 6.52 1.48 3.87 5.82
S4 4.62 60.32 24.26 8.79 18.32 22.23
S5 1.61 16.16 29.84 2.54 16.67 20.11
S6/SL4 4.12 60.00 21.41 8.20 16.33 21.33
S7 2.15 21.52 88.63 6.05 49.92 73.24
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Table 6.4: The performance measures on the FVC2004 �ngerprint databases.

Score EER FNMRzero FMRzero FMR100 FMR1000 FMR10000

methods

FVC2004 DB1_A
SC 1.85 17.90 18.56 3.20 7.45 8.38
SL1 2.18 19.78 60.51 4.05 14.93 53.22
SL2 3.19 42.16 53.84 5.65 16.96 27.06
SL3 2.87 20.34 30.99 6.78 18.40 29.47
S1 3.15 26.48 28.15 8.58 21.63 27.37
S2 4.27 99.09 30.60 7.56 19.14 27.29
S3 2.09 77.25 14.78 2.77 9.36 13.29
S4 3.75 34.16 28.65 9.04 21.05 26.12
S5 3.74 29.03 34.39 11.23 29.51 32.83
S6/SL4 3.64 30.63 30.25 8.62 19.49 27.64
S7 4.68 32.10 50.57 17.00 37.43 48.11

FVC2004 DB2_A
SC 1.39 21.58 24.24 2.21 7.36 15.72
SL1 1.67 46.12 98.55 3.14 15.59 32.76
SL2 3.41 28.89 67.00 6.63 20.74 29.62
SL3 2.22 22.38 69.94 5.95 23.51 36.41
S1 2.88 37.68 33.28 7.32 16.96 25.48
S2 5.20 98.38 48.27 10.77 19.53 36.97
S3 1.60 42.26 19.45 2.17 7.44 15.76
S4 3.95 36.85 43.37 8.56 28.22 32.48
S5 3.69 49.74 45.46 11.62 26.45 44.94
S6/SL4 3.57 32.48 37.14 8.08 25.96 33.92
S7 3.98 37.15 88.59 15.64 53.82 83.80

FVC2004 DB3_A
SC 1.53 33.64 7.37 2.06 4.94 6.79
SL1 1.78 51.96 64.69 2.63 10.58 53.79
SL2 3.31 45.68 25.47 6.50 13.17 18.40
SL3 1.70 13.09 54.81 3.05 11.93 30.21
S1 2.66 51.26 43.50 5.19 16.13 25.10
S2 5.25 95.58 29.59 9.96 16.17 21.89
S3 1.16 62.83 7.04 0.86 4.20 6.38
S4 2.69 47.97 22.22 6.71 13.09 21.93
S5 2.83 49.44 77.33 6.67 22.22 48.50
S6/SL4 2.72 47.21 21.85 6.54 13.05 19.05
S7 3.27 52.64 93.29 8.85 24.98 61.11
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Table 6.5: The AUC measure.

Score
methods DB1_A DB2_A DB3_A

FVC2002
SC 0.999990 0.999987 0.999628
SL1 0.999974 0.999954 0.999144
SL2 0.999902 0.999783 0.999061
SL3 0.999914 0.999946 0.999562
S1 0.999808 0.999660 0.998924
S2 0.998890 0.999098 0.994238
S3 0.999687 0.999909 0.999050
S4 0.998890 0.998733 0.992606
S5 0.999788 0.999733 0.998714
S6 0.997455 0.998961 0.993375
S7 0.999289 0.999469 0.996586

FVC2004
SC 0.998842 0.999030 0.998139
SL1 0.998210 0.997891 0.998139
SL2 0.995997 0.995404 0.995071
SL3 0.996938 0.997514 0.998648
S1 0.996170 0.997026 0.997016
S2 0.990353 0.984771 0.987327
S3 0.997855 0.998675 0.999038
S4 0.994859 0.994531 0.996772
S5 0.994969 0.995332 0.996547
S6 0.995239 0.995227 0.996825
S7 0.992271 0.992973 0.995369

The tstat-values between the EERs for SC and the best improved similarity
score are listed in Table 6.6. For the FVC2002 �ngerprint databases tstat
< tcrit and therefore, at a signi�cance level of 0.05, we cannot reject the null
hypothesis and subsequently conclude that, based on statistical evidence, there
is not a signi�cant di�erence between the pro�ciency of these two methods.
However, for the FVC2004 �ngerprint databases tstat > tcrit, which enables
us to reject the null hypothesis and conclude that SC is signi�cantly more
pro�cient than the best improved similarity score with a con�dence of 95%.

The tstat values between the EERs for SC and S3 are listed in Table 6.7. For
the FVC2004 �ngerprint databases tstat < tcrit and therefore, at a signi�cance
level of 0.05, we cannot reject the null hypothesis and subsequently conclude
that, based on statistical evidence, there is not a signi�cant di�erence between
the pro�ciency of these two methods. However, for the FVC2002 �ngerprint
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Table 6.6: The tstat-values between SC and the best improved individual
similarity score when evaluated on the FVC2002 and FVC2004 �ngerprint
databases.

Fingerprint databases tstat
FVC2002 2.038064
FVC2004 6.738195

databases tstat > tcrit, which enables us to reject the null hypothesis and con-
clude that SC is signi�cantly more pro�cient than S3 with a con�dence of 95%.

Table 6.7: The tstat-values between SC and S3 when evaluated on the FVC2002
and FVC2004 �ngerprint databases.

Fingerprint databases tstat
FVC2002 3.255176
FVC2004 0.164511

6.5 Discussion and conclusion

The �rst question posed in this chapter was whether combining the di�erent
types of similarity score calculation methods with the proposed fusion tech-
nique improves the performance of the individual similarity score calculation
methods, since the combined method is expected to address more intra-class
variations and inter-class similarities. The results indicate that the combina-
tion of the di�erent similarity score calculation methods improve the accuracy
of the individual methods signi�cantly when implemented on the FVC2004
�ngerprint databases, but the margin of improvement is not signi�cant when
implemented on the FVC2002 �ngerprint databases. Although only a marginal
improvement is observed for the EER (when implemented on the FVC2002
databases), the FMR and FNMR show a more substantial improvement which
hints towards the fact that this approach may better deal with di�erent types
of intra-class variations and inter-class similarities.

We do however conclude that these types of similarity score calculation
methods do not adequately address the problem of intra-class variations and
inter-class similarities, which is evident from the fact that a lower performance
is reported for the FVC2004 �ngerprint databases than is the case for the
FVC2002 �ngerprint databases. The results clearly indicate that the perfor-
mance is considerably lower when implemented on the FVC2004 �ngerprint
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databases than is the case for the FVC2002 databases. This study does not
provide an answer as to why this is the case, but it may be that these three
types of similarity score calculation methods are not su�ciently robust to
higher levels of nonlinear distortion and noise, even though they seem to bet-
ter capture the overall accuracy than is the case for the individual similarity
score calculation methods. Furthermore, the limitations of minutia extraction
and point matching may also contribute to this.

The third research question was whether the proposed individual and fused
similarity score calculation methods perform better than existing similarity
score calculation methods. The results indicate that there may be an improve-
ment for some of the databases considered, but at a 0.05 level of signi�cance,
the results for the FVC2004 �ngerprint databases do not provide su�cient
evidence to conclude that SC performs signi�cantly better than S3. For the
FVC2002 �ngerprint databases said improvement is however signi�cant at a
0.05 level of signi�cance. We therefore conclude that the answer to this ques-
tion depends on the intra-class variations and inter-class similarities within
the speci�c database. For the FVC2002 �ngerprint databases, SC , SL1, and
SL2 perform better than S3 based on the EER and the AUC. However, for the
FVC2004 �ngerprint databases, only SC performs better than S3 for two of
the three databases (if only by a small margin).

One question that remains is why the individual similarity score calcula-
tion method SL1, which is an adjusted version of S3, performs worse than S3
when implemented on the FVC2004 �ngerprint databases. One reason for this
may be (as discovered in Chapter 5), that the number of paired minutia points
(stage 2) of S3 is highly accurate in balancing robustness to noise against dis-
tinctiveness and addressing local inter-class similarity, whereas SL1 is sensitive
to local inter-class similarity. It would therefore seem that penalizing the local
inter-class similarity (in the same way that S3 does), is more accurate than
fusing S6 as proposed by Khanyile et al. (2014). Therefore, for these types of
similarity score calculation methods, there is still no e�ective way for dealing
with local inter-class similarity, since S3 and the penalization factor utilised
by S6 both penalize partially overlapping sets.

In summary, we conclude that fusing di�erent similarity scores by employ-
ing the proposed fusion strategy only results in an improvement for �ve or the
six databases and is only statistically signi�cant for databases with high lev-
els of noise and nonlinear distortion. This indicates that the proposed fusion
process better deals with the e�ect of di�erent intra-class variations and inter-
class similarities across multiple databases when considering the FNMRzero and
FMRzero. Even though this fusion process may address the e�ect of intra-class
variations and inter-class similarities to a certain extent, it does not solve the
problems associated with high levels of noise and nonlinear distortion.
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Chapter 7

Conclusion and future work

7.1 Conclusion

The research in this thesis investigated several similarity score calculation
methods for two aligned minutia sets in the context of biometric �ngerprint
veri�cation. Existing literature does not provide clear guidelines on how to
calculate an accurate similarity score, nor does it demonstrate which exist-
ing similarity score is the most pro�cient, since the performance measures
reported in existing studies include errors associated with the preprocessing
procedures. The object of this study was therefore to group similar types
of similarity scores together, identify the better existing similarity scores and
from these results deduce guidelines for calculating accurate similarity scores.
This study accomplished these objectives.

In Chapter 2 we provided an overview of existing advanced similarity score
calculation methods. In Chapter 3 we explained the preprocessing procedures
geared towards the removal of erroneous comparisons that may in�uence the
similarity scores, and enabled us to sensibly compare di�erent similarity scores
in the subsequent chapters. In Chapter 4 we compared seven existing similar-
ity scores and studied the problematic comparisons in order to identify what
constitutes an accurate similarity score.

The results demonstrated that a similarity score has to address the two
types of inter-class similarities without being sensitive to any intra-class varia-
tions. The study also suggested that global inter-class similarity can either be
addressed by combining the local similarity method with distortion tolerant
relaxation as proposed by Cappelli et al. (2010b), or by combining the local
similarity method with the �percentage of paired minutia points�. The afore-
mentioned approach is slightly more sensitive to nonlinear distortion, while the
latter approach is slightly more sensitive to noise. The local inter-class simi-
larity can be addressed by including more paired minutia points for method
S3 or by adding a penalization factor for method S1. When implemented on
the six databases considered, methods S1 and S3, that both incorporate the
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above-mentioned features, generally produce the lowest EERs.
Since the local similarity forms an important part of the two strategies out-

lined in the above paragraph, Chapter 5 investigated di�erent approaches to
local similarity score calculation in order to establish guidelines for calculating
the local similarity. The results demonstrated that the proposed local de-
scriptor and similarity method that utilise all the neighbouring minutia pairs,
perform the best across most of the databases when combined through di�er-
ent strategies during stage 2. This improvement in performance is signi�cant
when compared to the Minutia Cylinder Code (MCC) local similarity and im-
plemented on the FVC2004 �ngerprint databases. Said improvement is only
marginal (and not statistically signi�cant) for the other databases

Chapter 5 also indicated that it is best to consider an estimated 50% of
the minutia pairs in order to calculate the �nal local similarity score through
an assignment-based approach. This is due to the fact that when all the
possible pairs are considered, the algorithm may be sensitive to noise, while
the utilisation of only the best three pairs may not be distinctive enough.
This approach is also more distinctive than the threshold-based approach for
local similarity score calculation, and lead to a signi�cant improvement in
pro�ciency when implemented on databases with higher noise levels.

As mentioned above, S1 and S3 both address global inter-class similarity
in di�erent ways and are sensitive to di�erent intra-class variations. These
methods are however di�cult to combine since both methods depend on dif-
ferent strategies for identifying the paired minutia points, which is vital for
high distinctiveness within each method. However, not all comparisons are as-
sociated with the same intra-class variations or inter-class similarities, which
points towards the possibility that using these methods in combination may
improve the performance.

A method was therefore proposed in Chapter 6 that combines these dif-
ferent similarity scores in such a way that it results in a higher con�dence.
We concluded that combining the di�erent types of similarity score calcula-
tion methods in this way marginally improves performance, since it addresses
the di�erent inter-class similarities, while also being slightly less a�ected by
the di�erent intra-class variations. However, said improvement is only signif-
icant when implemented on databases with high levels of noise and nonlinear
distortion.

We �nally concluded in Chapter 4 and 6 that a good similarity score has to
address local inter-class similarity. Khanyile et al. (2014), Jain et al. (2008),
and Cappelli et al. (2010a) propose ways for dealing with local inter-class
similarity (Chapter 4). However, these methods are all sensitive to partially
overlapping sets. This study therefore indicated that it is extremely di�cult
for similarity score calculation methods to deal with local inter-class similarity
without being sensitive to partial overlap. A similar problem was encountered
for nonlinear distortion and noise in the context of global inter-class similarity.

In summary, this study identi�ed several of the best existing similarity score
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calculation methods for overcoming the adverse e�ects that preprocessing er-
rors may have on the performance of these methods. The reported results
provided guidelines for calculating accurate similarity scores, while certain
problems that still exist, were identi�ed. Better guidelines may slightly im-
prove the accuracy, but do not solve the problems associated with high levels
of intra-class variations and inter-class similarities. Even though we do not
conclude that further improvements to similarity score calculation methods
are impossible, we suggest that a signi�cant increase in pro�ciency will more
likely be achieved by addressing the problems (local inter-class similarity and
nonlinear distortion) associated with the stages preceding the similarity score
calculation stage.

7.2 Future work

This study identi�ed three main problems that still complicate the develop-
ment of accurate similarity score calculation methods, namely high levels of
noise, nonlinear distortion and high levels of local inter-class similarity. We
aim to address these problems in the future, however since the combination
of the di�erent similarity score calculation methods do not produce promising
results, we will rather focus on improving the stages that precede the simi-
larity score calculation stage. Future work will therefore investigate minutia
point quality measures that reduce the impact of false minutia points before
similarity score calculation. Furthermore, the thin plate spline model will be
considered to account for nonlinear distortion before the similarity scores calcu-
lation stage is implemented. Finally we note that high levels of local inter-class
similarity are the result of impostor comparisons that align only on the edge
of a �ngerprint. Future work may therefore consider core and delta points for
alignment purposes, which may reduce the aforementioned problem without
causing the similarity scores to be sensitive to partial overlap.
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Appendix A

Determining the group thresholds

for the problematic comparisons

De�ning the level of intra-class variations or inter-class similarities in �nger-
print data is very challenging for several reasons. Firstly, these di�erent types
of variations and similarities are not equally represented in the same database
or across di�erent databases. The second reason is that although the impact
of these variations and similarities depends on the speci�c score calculation
methods, we aim to investigate how the di�erent matching score calculation
methods deal with these variations and similarities and can therefore not use
the matching score calculation methods to determine the thresholds for the
groups. In addition to di�erent matching score calculation methods, we also
have di�erent numbers of problematic comparisons. Furthermore, the values
of the di�erent features used to measure the di�erent intra-class variations and
inter-class similarities have di�erent ranges.

However, we know that a genuine comparison's estimated probability of
being genuine is not only based on the di�erent features, but also on how
the di�erences in feature values compare to the same features for impostor
comparisons. When we consider Figures A.1 (b), A.1 (c), A.1 (e), A.2 (a), and
A.2 (b), it is clear that the impostor comparisons' distribution between the
databases appears very similar even though large di�erences are present among
the genuine comparisons. For these cases we used the impostor comparisons'
distribution characteristics such as the standard deviation or di�erent quartiles
to determine the thresholds for the di�erent groups.

The di�erent thresholds were determined as follows: The threshold for the
matched ratio was speci�ed at 0.5 since it is clear from Figure A.1 (e) that
the maximum values for the whisker plots for impostor comparisons of both
FVC2002 DB1_A and FVC2004 DB1_A are approximately 0.5. The thresh-
old for the average distance between the minutia points forming pairs was
taken to be the mean value of the lower quartile of the impostor comparisons
for FVC2002 DB1_A and FVC2004 DB1_A as shown in Figure A.1 (c). The
threshold for the local and global inter-class similarity features were taken to
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Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. DETERMINING THE GROUP THRESHOLDS FOR THE

PROBLEMATIC COMPARISONS 79

(a) Number of paired minutia points with

the tolerance box approach.

(b) Number of un-paired minutia points.

(c) Average distance between minutia

pairs after alignment.

(d) Size of overlapping convex hull.

(e) Match ratio.

Figure A.1: Features measuring the levels of intra-class variations.

be the average value of the two upper limit standard deviations of the two
databases' impostor comparisons.

Dealing with the partial overlap was more challenging since both the global
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(a) Global inter-class similarity measure. (b) Local inter-class similarity measure.

Figure A.2: Features measuring the levels of intra-class variations in the two
databases.

and local inter-class similarities in�uence the impostor comparisons' overlap-
ping size as is clear from Figure A.1 (d). In this case we calculated the average
convex hull size of the sets in the di�erent databases. FVC2002 DB1_A had
a mean convex hull set size of 45203.3 square pixels with a standard deviation
of 12381.6, while FVC2004 DB1_A had a mean set size of 53703.6 square
pixels with a standard deviation of 15968.4. When the standard deviation is
subtracted from both of these mean values the result is slightly larger than
30000 square pixels and the threshold was therefore set at 25000 square pixels.

The di�erent thresholds were not calculated in exactly the same way, since
the distributions di�er too much and we only aimed to identify the worst
problematic comparisons. In these scenarios the groups can not be directly
compared as previously mentioned. Only the number of comparisons associ-
ated with a speci�c group may be compared for di�erent score generators or
databases. Therefore, the approach adopted in this section does not provide a
perfect way of showing which score generators su�er from speci�c intra-class
variations or inter-class similarities, but it still provides an indication of the
pro�ciency of the score generators in question.
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The type II erroneous comparisons

The type II erroneous comparisons are comparisons where the Local Greedy
Similarity with Distortion Tolerant Relaxation (LGS_DTR) point matching
algorithm failed to correctly identify the three most similar paired minutia
points. As Chapter 3 explained, these comparisons were identi�ed by super-
imposing the minutia points and three most similar paired minutia points onto
the two �ngerprint images, after which a manual study was performed to de-
termine whether the point matching algorithm succeeded or failed. This is
not the main focus of this study and the comparisons that were removed are
therefore not included in Chapter 4, but we deemed it necessary to include
it here. This protocol is followed since a manual study is subjective and may
therefore be di�erent when conducted by di�erent individuals. In order to
achieve the reported results, it is therefore important to know which type II
erroneous comparisons were removed from each database. These comparisons
are listed below, where a_b, c_d implies that impression b from individual a
is being compared to impression d of individual c.

FVC2002 DB1_A

21_4,21_7 21_4,21_8 28_3,28_7 29_6,29_7

29_6,29_8 36_1,36_5 36_4,36_7 45_4,45_7

59_4,59_7 59_4,59_8 70_1,70_6 74_1,74_6

75_5,75_7 75_5,75_8 78_1,78_5 78_3,78_5

87_4,87_6 89_3,89_4 89_6,89_8 96_4,96_8

100_5,100_7

FVC2002 DB2_A

4_4,4_6 4_4,4_7 5_1,5_5 8_5,8_8

32_6,32_7 33_1,33_6 36_4,36_5 38_2,38_3

60_3,60_8 60_4,60_8 68_2,68_5 68_5,68_7

81
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73_2,73_8 77_2,77_4 77_2,77_6 77_2,77_7

78_1,78_5 89_1,89_6 94_5,94_8 97_7,97_8

FVC2002 DB3_A

3_4,3_8 11_3,11_8 16_1,16_2 16_1,16_4

17_1,17_5 17_3,17_4 17_4,17_5 17_4,17_7

19_1,19_4 19_1,19_5 19_1,19_6 19_1,19_7

19_1,19_8 19_4,19_5 24_2,24_7 24_2,24_8

24_4,24_6 24_4,24_7 24_4,24_8 26_5,26_6

30_2,30_6 30_5,30_6 30_6,30_7 31_1,31_8

36_1,36_4 36_2,36_4 36_3,36_4 40_2,40_5

40_2,40_6 40_3,40_6 40_3,40_7 40_4,40_5

40_4,40_6 41_3,41_4 41_5,41_6 41_6,41_8

42_1,42_5 42_1,42_6 42_2,42_6 42_3,42_6

42_3,42_7 42_5,42_6 42_6,42_8 47_1,47_6

47_2,47_6 47_4,47_6 47_5,47_6 47_6,47_7

48_5,48_7 52_4,52_7 53_3,53_5 53_5,53_6

53_5,53_7 53_5,53_8 55_6,55_8 64_1,64_8

71_2,71_6 71_5,71_6 71_6,71_7 71_6,71_8

72_3,72_7 72_4,72_7 72_5,72_7 74_4,74_5

82_3,82_8 82_4,82_8 86_1,86_5 86_2,86_5

86_3,86_5 86_4,86_5 93_1,93_6 93_1,93_8

93_2,93_6 93_3,93_6 93_3,93_8 93_4,93_6

94_1,94_2 94_1,94_6 94_2,94_4 94_2,94_5

94_2,94_6 94_3,94_6 95_4,95_5 96_2,96_3

96_2,96_5 96_2,96_6 96_2,96_7 97_2,97_5

97_2,97_6 97_2,97_7 97_2,97_8 98_1,98_2

98_2,98_3 98_3,98_5 98_7,98_8 100_2,100_6

FVC2004 DB1_A

1_4,1_6 1_4,1_8 2_2,2_4 2_4,2_5

2_4,2_6 2_4,2_8 2_1,2_4 2_3,2_4

2_4,2_7 3_1,3_4 4_2,4_4 5_4,5_7

6_2,6_3 6_3,6_7 6_3,6_8 7_2,7_4

7_3,7_8 7_4,7_6 7_4,7_7 7_1,7_4

8_3,8_7 9_3,9_7 9_3,9_8 11_2,11_7

13_2,13_3 13_3,13_6 14_1,14_3 14_3,14_5

14_3,14_6 14_3,14_7 14_3,14_8 14_7,14_8

14_2,14_8 14_2,14_3 14_5,14_8 15_1,15_4

15_4,15_5 16_1,16_4 16_4,16_8 16_5,16_6
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17_1,17_3 17_2,17_3 18_2,18_8 18_3,18_8

19_1,19_4 19_4,19_8 20_2,20_3 20_3,20_6

20_3,20_7 20_5,20_8 20_3,20_8 21_7,21_8

22_1,22_3 23_1,23_5 26_1,26_3 26_2,26_3

26_3,26_4 26_3,26_5 26_3,26_8 26_6,26_8

28_3,28_4 28_3,28_5 28_3,28_7 28_3,28_6

29_3,29_8 29_3,29_6 32_3,32_6 34_1,34_3

34_2,34_8 34_3,34_8 36_7,36_8 37_3,37_7

38_1,38_3 39_6,39_8 39_3,39_7 39_6,39_7

46_1,46_2 46_3,46_8 46_1,46_3 49_3,49_4

49_3,49_8 50_2,50_3 50_3,50_5 50_3,50_8

52_3,52_4 52_3,52_5 52_3,52_6 52_3,52_7

52_3,52_8 52_1,52_3 54_1,54_3 54_2,54_3

54_3,54_8 56_4,56_8 56_3,56_8 56_1,56_8

57_2,57_4 57_2,57_5 57_2,57_6 57_2,57_7

57_2,57_8 57_1,57_2 59_4,59_7 59_2,59_3

59_2,59_4 60_3,60_7 61_3,61_5 61_4,61_6

62_1,62_8 62_3,62_8 62_4,62_7 62_5,62_8

62_1,62_4 62_2,62_8 63_1,63_2 63_1,63_4

63_2,63_4 63_4,63_5 63_4,63_6 63_4,63_7

63_4,63_8 63_3,63_4 64_1,64_3 64_2,64_8

64_3,64_4 64_3,64_6 64_3,64_7 64_3,64_8

64_2,64_4 66_2,66_4 66_4,66_5 66_4,66_6

66_4,66_7 66_1,66_4 68_1,68_3 68_1,68_8

68_3,68_6 68_3,68_8 69_1,69_4 70_3,70_4

70_3,70_7 70_3,70_6 72_1,72_6 73_1,73_3

73_3,73_7 73_3,73_8 74_1,74_3 75_3,75_7

75_1,75_3 75_3,75_8 78_2,78_6 78_2,78_8

82_2,82_6 83_3,83_4 83_2,83_7 83_3,83_7

84_1,84_4 84_3,84_4 84_4,84_7 84_1,84_3

84_6,84_8 85_1,85_8 85_5,85_8 85_6,85_8

85_2,85_8 85_3,85_8 86_2,86_8 86_3,86_8

86_4,86_8 86_7,86_8 86_1,86_8 87_4,87_8

88_1,88_8 89_3,89_8 90_4,90_5 90_4,90_8

90_4,90_5 92_1,92_8 92_3,92_8 92_5,92_8

92_7,92_8 96_1,96_4 96_2,96_4 96_3,96_4

96_3,96_8 96_4,96_6 96_4,96_7 96_4,96_8

96_5,96_8 96_5,96_7 98_2,98_5 98_2,98_6

98_3,98_5 98_3,98_6 98_4,98_8

FVC2004 DB2_A

2_4,2_8 5_3,5_6 5_4,5_6 5_6,5_8
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8_2,8_8 8_1,8_8 8_5,8_8 9_2,9_8

9_3,9_5 9_3,9_7 9_3,9_8 9_4,9_8

9_5,9_7 9_3,9_7 10_1,10_8 11_1,11_4

12_4,12_8 14_6,14_7 16_5,16_7 16_7,16_8

17_2,17_8 18_2,18_8 18_3,18_8 18_4,18_8

18_5,18_8 19_1,19_8 19_2,19_8 19_4,19_8

19_7,19_8 21_1,21_8 21_4,21_8 23_2,23_8

23_3,23_8 23_4,23_8 23_6,23_8 26_2,26_7

26_3,26_7 26_4,26_7 26_5,26_8 27_6,27_8

28_7,28_8 33_1,33_8 33_3,33_8 33_2,33_8

34_1,34_3 34_1,34_7 34_4,34_8 42_1,42_7

45_2,45_8 45_6,45_8 46_2,46_8 46_3,46_8

46_6,46_8 46_7,46_8 46_4,46_8 49_3,49_7

49_5,49_7 51_1,51_4 51_6,51_8 52_2,52_8

52_5,52_8 53_2,53_8 53_4,53_8 53_5,53_8

53_6,53_8 53_7,53_8 54_1,54_4 54_4,54_7

54_4,54_8 54_5,54_7 54_6,54_7 54_4,54_5

54_3,54_7 64_1,64_8 64_5,64_8 65_1,65_8

65_2,65_6 65_2,65_8 65_3,65_7 65_3,65_8

65_5,65_8 67_1,67_8 67_3,67_8 67_5,67_8

73_5,73_6 77_1,77_2 77_2,77_3 77_2,77_5

77_2,77_6 77_2,77_7 77_2,77_8 77_2,77_4

78_7,78_8 78_1,78_8 79_4,79_8 81_4,81_8

82_1,82_4 82_2,82_4 82_4,82_7 82_4,82_8

83_1,83_7 83_1,83_8 83_2,83_8 83_7,83_8

83_5,83_8 84_1,84_8 84_2,84_8 84_6,84_8

84_5,84_8 85_1,85_6 85_1,85_8 85_2,85_5

85_2,85_6 85_2,85_7 85_2,85_8 85_4,85_6

85_4,85_8 85_5,85_6 85_5,85_8 85_6,85_7

85_7,85_8 85_1,85_2 85_3,85_7 85_4,85_7

85_5,85_7 87_1,87_2 87_2,87_3 87_2,87_8

87_2,87_5 89_1,89_4 91_4,91_8 91_6,91_8

91_7,91_8 93_1,93_8 93_2,93_7 93_6,93_8

93_7,93_8 93_3,93_8 93_4,93_8 93_1,93_2

94_1,94_8 94_2,94_8 94_3,94_8 94_5,94_8

94_6,94_8 96_1,96_6 97_1,97_3 97_1,97_4

97_1,97_6 97_3,97_4 97_3,97_5 97_3,97_6

97_3,97_8 97_4,97_5 97_4,97_8 97_6,97_8

97_1,97_5 97_4,97_6 97_1,97_8 97_5,97_8

99_1,99_5 99_1,99_6 99_1,99_7 99_1,99_8

99_3,99_4 99_3,99_5 99_3,99_6 99_3,99_8

99_4,99_5 99_4,99_6 99_4,99_7 99_4,99_8

99_5,99_6 99_5,99_7 99_5,99_8 99_6,99_7

99_6,99_8 99_7,99_8 99_1,99_3 99_1,99_4
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99_3,99_7 100_1,100_4 100_1,100_5 100_3,100_4

100_4,100_5 100_4,100_6 100_4,100_7 100_1,100_7

100_1,100_8

FVC2004 DB3_A

1_2,1_4 6_1,6_6 10_2,10_4 10_4,10_8

19_1,19_2 19_3,19_8 20_3,20_7 21_2,21_8

21_5,21_8 22_1,22_8 27_2,27_8 29_2,29_4

29_2,29_5 29_2,29_7 29_3,29_5 29_3,29_7

29_3,29_8 29_5,29_7 29_6,29_7 29_2,29_8

30_3,30_7 31_6,31_7 32_4,32_8 34_3,34_8

34_4,34_7 34_4,34_8 34_6,34_8 34_1,34_8

34_2,34_8 34_5,34_8 37_5,37_8 41_2,41_7

41_3,41_4 41_3,41_6 42_7,42_8 42_1,42_8

42_3,42_8 43_1,43_5 43_2,43_5 43_5,43_6

43_5,43_8 43_3,43_5 44_3,44_8 44_1,44_4

46_2,46_8 46_3,46_8 47_4,47_8 48_2,48_7

48_3,48_7 48_4,48_7 48_1,48_4 48_2,48_4

49_1,49_7 49_1,49_8 50_1,50_8 50_2,50_7

50_2,50_8 50_4,50_7 50_6,50_7 61_1,61_7

61_1,61_8 61_6,61_7 61_6,61_8 61_5,61_7

61_2,61_7 62_1,62_8 62_2,62_7 62_3,62_7

62_3,62_8 62_4,62_7 62_5,62_7 62_6,62_8

62_6,62_7 64_2,64_8 64_5,64_8 64_6,64_8

65_2,65_8 65_3,65_8 65_5,65_8 66_5,66_8

67_2,67_7 69_1,69_8 69_3,69_8 69_4,69_8

69_5,69_8 70_1,70_5 70_1,70_7 70_2,70_7

71_1,71_8 71_6,71_8 72_1,72_4 72_1,72_5

72_1,72_6 72_1,72_7 72_1,72_8 72_2,72_5

72_2,72_6 72_2,72_8 72_3,72_5 72_3,72_6

72_3,72_7 72_3,72_8 72_4,72_8 72_5,72_8

73_1,73_7 75_1,75_6 75_6,75_8 75_1,75_5

75_5,75_6 75_5,75_7 75_5,75_8 76_1,76_4

76_4,76_8 76_5,76_8 76_3,76_4 77_3,77_7

78_1,78_8 78_2,78_8 78_3,78_6 78_3,78_8

78_4,78_8 78_5,78_8 78_7,78_8 80_3,80_7

80_2,80_7 82_4,82_5 88_1,88_3 89_1,89_7

89_4,89_7 89_6,89_7 89_5,89_7 90_4,90_7

90_4,90_8 90_5,90_7 92_4,92_7 92_5,92_8

93_2,93_5 94_1,94_4 94_1,94_8 94_2,94_4

94_2,94_6 94_2,94_7 94_2,94_8 94_2,94_5
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96_1,96_4 96_1,96_6 96_1,96_8 96_2,96_8

96_3,96_8 96_4,96_8 96_5,96_8 96_6,96_8

96_7,96_8 97_4,97_8 98_2,98_3 100_5,100_7
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