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Abstract

In this study we investigate the feasibility of combining an ensemble of eight continuous
base classifiers for the purpose of off-line signature verification. This work is mainly
inspired by the process of cheque authentication within the banking environment. Each
base classifier is constructed by utilising a specific local feature, in conjunction with a
specific writer-dependent signature modelling technique. The local features considered are
pixel density, gravity centre distance, orientation and predominant slant. The modelling
techniques considered are dynamic time warping and discrete observation hidden Markov
models. In this work we focus on the detection of high quality (skilled) forgeries.

Feature extraction is achieved by superimposing a grid with predefined resolution
onto a signature image, whereafter a single local feature is extracted from each signature
sub-image corresponding to a specific grid cell. After encoding the signature image into
a matrix of local features, each column within said matrix represents a feature vector
(observation) within a feature set (observation sequence). In this work we propose a novel
flexible grid-based feature extraction technique and show that it outperforms existing rigid

grid-based techniques.
The performance of each continuous classifier is depicted by a receiver operating char-

acteristic (ROC) curve, where each point in ROC-space represents the true positive rate
and false positive rate of a threshold-specific discrete classifier. The objective is therefore
to develope a combined classifier for which the area-under-curve (AUC) is maximised -
or for which the equal error rate (EER) is minimised.

Two disjoint data sets, in conjunction with a cross-validation protocol, are used for
model optimisation and model evaluation. This protocol avoids possible model over-
fitting, and also scrutinises the generalisation potential of each classifier. During the first
optimisation stage, the grid configuration which maximises proficiency is determined for
each base classifier. During the second optimisation stage, the most proficient ensemble
of optimised base classifiers is determined for several classifier fusion strategies. During
both optimisation stages only the optimisation data set is utilised. During evaluation,
each optimal classifier ensemble is combined using a specific fusion strategy, and retrained
and tested on the separate evaluation data set. We show that the performance of the
optimal combined classifiers is significantly better than that of the optimal individual
base classifiers.

Both score-based and decision-based fusion strategies are investigated, which includes
a novel extension to an existing decision-based fusion strategy. The existing strategy is
based on ROC-statistics of the base classifiers and maximum likelihood estimation. We
show that the proposed elitist maximum attainable ROC-based strategy outperforms the
existing one.
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Opsomming

In hierdie projek ondersoek ons die haalbaarheid van die kombinasie van agt kontinue
basis-klassifiseerders, vir statiese handtekeningverifikasie. Hierdie werk is veral relevant
met die oog op die bekragtiging van tjeks in die bankwese. Elke basis-klassifiseerder word
gekonstrueer deur ’n spesifieke plaaslike kenmerk in verband te bring met ’n spesifieke
skrywer-afhanklike handtekeningmodelleringstegniek. Die plaaslike kenmerke sluit pik-
seldigtheid, swaartepunt-afstand, oriëntasie en oorheersende helling in, terwyl die model-
leringstegnieke dinamiese tydsverbuiging en diskrete verskuilde Markov modelle insluit.
Daar word op die opsporing van hoë kwaliteit vervalsings gefokus.

Kenmerk-onttreking word bewerkstellig deur die superponering van ’n rooster van
voorafgedefinieerde resolusie op ’n bepaalde handtekening. ’n Enkele plaaslike kenmerk
word onttrek vanuit die betrokke sub-beeld geassosieer met ’n spesifieke roostersel. Nadat
die handtekeningbeeld na ’n matriks van plaaslike kenmerke getransformeer is, verteen-
woordig elke kolom van die matriks ’n kenmerkvektor in ’n kenmerkstel. In hierdie werk
stel ons ’n nuwe buigsame rooster-gebasseerde kenmerk-ontrekkingstegniek voor en toon
aan dat dit die bestaande starre rooster-gebasseerde tegnieke oortref.

Die prestasie van elke kontinue klassifiseerder word voorgestel deur ’n ROC-kurwe,
waar elke punt in die ROC-ruimte die ware positiewe foutkoers en vals positiewe foutkoers
van ’n drempel-spesifieke diskrete klassifiseerder verteenwoordig. Die doelwit is derhalwe
die ontwikkeling van ’n gekombineerde klassifiseerder, waarvoor die area onder die kurwe
(AUC) gemaksimeer word - of waarvoor die gelyke foutkoers (EER) geminimeer word.

Twee disjunkte datastelle en ’n kruisverifiëringsprotokol word gebruik vir model opti-
mering en model evaluering. Hierdie protokol vermy potensiële model-oorpassing, en on-
dersoek ook die veralgemeningspotensiaal van elke klassifiseerder. Tydens die eerste opti-
meringsfase word die rooster-konfigurasie wat die bekwaamheid van elke basis-klassifiseer-
der maksimeer, gevind. Tydens die tweede optimeringsfase word die mees bekwame
groepering van geoptimeerde basis-klassifiseerders gevind vir verskeie klassifiseerder fusie-
strategieë. Tydens beide optimeringsfases word slegs die optimeringsdatastel gebruik.
Tydens evaluering word elke optimale groep klassifiseerders gekombineer met ’n spesi-
fieke fusie-strategie, her-afgerig en getoets op die aparte evalueringsdatastel. Ons toon
aan dat die prestasie van die optimale gekombineerde klassifiseerder aansienlik beter is
as dié van die optimale individuele basis-klassifiseerders.

Beide telling- en besluit-gebaseerde fusie-strategieë word ondersoek, insluitend ’n nuwe
uitbreiding van ’n bestaande besluit-gebasseerde kombinasie strategie. Die bestaande
strategie is gebaseer op die ROC-statistiek van die basis-klassifiseerders en maksimum
aanneemlikheidsberaming. Ons toon aan dat die voorgestelde elitistiese maksimum haal-
bare ROC-gebasseerde strategie die bestaande strategie oortref.
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Chapter 1

Introduction

“He who seeks for methods without having a definite problem in mind seeks in the most

part in vain.”
- David Hilbert (1862–1943)

1.1 Background

The field of automatic signature verification has intrigued researchers the world over
during recent decades, as it not only serves as an exciting platform for the development
of innovative mathematical modelling techniques, but also holds undeniable economic
potential. As a result, signature verification systems have experienced quantum leaps
regarding both complexity and efficiency at a continuous and relentless pace.

As the world population continues to increase1, so too does the potential for ill-
intentioned individuals to perpetrate identity fraud. Such efforts are further supported
by the relatively recent paradigm shifts regarding point-of-sale payment options. The
use of cheques and especially credit cards have quickly become the preferred method
of payment for most individuals, particularly in the developed world. Even though this
monetary evolution holds obvious benefits, as it all but eradicates the need for individuals
to carry large amounts of cash on their person, it is entirely based on the notion that these
tokens would be of no use whatsoever to anyone other than the owner, as a transaction
cannot be completed without a valid signature.

This is simply not the case, as both cheque and credit card fraud cost financial insti-
tutions an unfathomable amount of money on an annual basis. Reports by the American
Bankers Association (2007) suggest that annual attempted cheque fraud in the United
States increased from $5.5 billion to $12.2 billion during the period 2003–2007, whilst ac-
tual losses increased from $677 million to $969 million during the same period. Also, the
Association for Payment Clearing Services (2008) report that during the first semester
of 2008, losses due to cheque fraud in the United Kingdom reached £20.4 million, whilst
losses due to point-of-sale credit card fraud reached £47.4 million. These levels constitute
increases of 35% and 26%, respectively, when compared to the same period in 2007.

1According to the United States Census Bureau (2008), world population increased from 3 billion to
6 billion during the period 1959–1999, whilst current estimations indicate it will reach 7 billion in 2012.

1
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All the aforementioned factors suggest that effective automatic handwritten signature
verification systems are no longer a technological luxury as in years past, but have in fact
become a true necessity in the modern document processing environment.

1.2 Key concepts

The successful implementation of an off-line handwritten signature verification system
represents a highly specialised amalgamation of various concepts throughout the mathe-
matical sciences. In this section, several of the most important concepts relevant to such
an application are discussed.

1.2.1 Pattern recognition

The process of pattern recognition constitutes the intelligent foundation of any decision-
making process. In order to perform anything from menial tasks to complex data analysis,
human beings rely greatly on the ability of the brain to perform pattern recognition on
a daily basis. Consider, for example, attempting to drive a vehicle without the ability
to recognise and interpret traffic signals. Such real-time pattern recognition processes
govern nearly every scenario in modern society.

From a mathematical perspective, pattern recognition involves classifying a pattern,
represented by an observation sequence X, as belonging to one of Ω finite pattern classes

{ω1, ω2, . . . , ωΩ}. An observation sequence is constructed from a set of T , d-dimensional
feature vectors {x1,x2, . . . ,xT}, where each element of xi denotes a measurement of
arbitrary origin, referred to as a feature.

The pattern recognition process, as illustrated in Figure 1.1, consists primarily of
two phases, namely feature extraction and classification. In some cases, depending on
the nature of the data being modelled and the classification technique utilised, certain
preprocessing and/or post-processing of the system data may be required.

Pattern

Preprocessing

Feature

extraction

Post-processing

Classification Decision

Figure 1.1: The pattern recognition process.

Feature extraction

During the feature extraction phase, the system analyses a given pattern and records
certain features, in order to yield structured data in the form of an observation sequence.
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Any measurable quantity may constitute a feature. However, since the ultimate aim is
to classify a test pattern based solely on such features, it becomes advisable to select
a feature set such that patterns belonging to different pattern classes are maximally
separated2 in the feature space. A selection of popular feature types, in the context of
signature verification, is categorised in Figure 1.2.

Feature

Global Local

Component-Oriented Pixel-Oriented

Envelope Projection

Orientation Slant
Pixel

Density

Gravity

Centre Distance

. . .. . .

. . .

Figure 1.2: Categorisation of popular features associated with off-line signatures.

The base classifiers developed in this study employ a selection of local features, in-
cluding pixel density (PD), gravity centre distance (GCD), orientation (ORT) and pre-

dominant slant (PS). These features have been used to great effect in the literature, as
each enables signature analysis on either stroke or sub-stroke level, thereby generating
robust observation sequences. Furthermore, each base classifier developed in this study
employs a novel feature extraction technique, combining the efforts of the aforementioned
local features with a flexible grid-based signature segmentation strategy.

Classification

During the classification phase, the feature space is partitioned into Ω disjoint regions,
where each region is representative of a pattern class. If the pattern classes represented
within the training set are known beforehand, this process is referred to as supervised

learning. Conversely, during unsupervised learning, the system is required to define these
pattern classes, prior to delivering a classification result. Subsequently, if an observation
sequence X is yielded by the feature extraction phase and found to be contained within
region Rj, the pattern is classified as belonging to pattern class ωj.

As is the case with feature selection, there exists a wide variety of classification tech-
niques available for incorporation into a successful signature verification system. Selected
examples of such techniques are categorised in Figure 1.3.

The base classifiers developed in this study construct writer models using two fun-
damentally different classification techniques, namely the dynamic time warping (DTW)

2In an optimal scenario, each pattern class would occupy a compact and disjoint region.
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Classification Technique

Statistical

Template Matching

Hidden

Markov Models

Neural

Networks

Structural

Dynamic

Time Warping

Displacement

Function

String/Tree

Matching

Description Graph

Analysis

. . .

. . .

. . .

Figure 1.3: Categorisation of popular classification techniques.

algorithm and the discrete observation hidden Markov model (HMM). DTW is a com-
monly used template matching technique, whilst the HMM represents a powerful genera-
tive model. Both the DTW and HMM base classifiers are trained, given a set of genuine
signature patterns per writer, using supervised learning.

1.2.2 Combined classifiers

In general, a pattern recognition system is constructed by utilising one or more feature
extraction techniques, in conjunction with a single classification technique. The use of
several feature extraction techniques is recommended, as this ensures greater separation
of different pattern classes in the feature space.

Given a set of two or more classifiers, referred to as a classifier ensemble, it is logical
to expect an improvement in performance when combining the separate efforts of each
into a single classifier, referred to as a combined classifier. The combination process is
performed either on score level or decision level.

In this study, we consider both score fusion and decision fusion, in order to develop
fundamentally different combined classifiers. These combined classifiers utilise the efforts
of the set of HMM and DTW base classifiers developed in this study.

1.2.3 Automatic identification systems

The process of manual signature verification is a laborious one. This is especially true
in the commercial and financial sectors, where vast quantities of cheques and other of-
ficial documents are processed on a daily basis. Furthermore, advances achieved in the
computer industry over the past few decades have not only introduced computer systems
to a wide range of previously unconsidered locations, but have also rendered the use
of computer-based systems for identity verification a computationally and economically
viable option.

A well-developed automatic identification system holds two cardinal advantages over
human verifiers, namely efficiency and accuracy. According to Coetzer et al. (2006),
where human and machine performance is directly compared within the context of off-
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line signature verification, a bank clerk is likely to take 3–5 seconds in verifying the
authenticity of a signed cheque. For this reason, only cheques valued over a certain
threshold are usually submitted for manual verification. In contrast, assuming an efficient
design and implementation, one may typically expect a machine to perform the same
task in a matter of milliseconds, once a suitable digital representation of the signature
is acquired. This increased efficiency therefore allows the processing of a much greater
number of cheques, such that cheques of a significantly increased range of values can be
submitted for verification. In addition, Coetzer et al. report that the probability that
a human verifier will outperform their HMM-based verification system, 1–4 times in 22
trials, is 0.22%. This statistic undeniably confirms the enormous potential associated
with deploying a machine-based handwritten signature verification system, either as an
alternative to manual verification or simply as a reliable aid.

In general, automatic identification systems are categorised as being either knowledge-

based, possession-based or biometric, as illustrated in Figure 1.4.

Automatic Identification System

Knowledge-based Possession-based Biometric

KeyPassword CardAccess code

. . . . . .

Figure 1.4: Categorisation of automatic identification systems.

Knowledge-based identification systems require an individual to produce some form
of information, usually a password or access code, for verification purposes. As we are
constantly reminded, though, we currently live in the information age, where entities
such as the internet provide human beings with constant, and potentially unrestricted,
access to practically any information desired. This concept greatly diminishes the level
of security offered by a knowledge-based identification system.

Possession-based identification systems attempt to eradicate this defect by requiring
an individual to produce a physical token, such as a key or card. Such tokens may
of course be lost or stolen, thereby nullifying the security provided by the associated
possession-based identification system.

Biometric identification systems generally avoid both the aforementioned pitfalls by
performing ad hoc verification on the basis of a physiological or behavioural attribute
unique to the person in question, thereby strictly requiring the presence of an authorised
individual. Such systems are discussed further in the next section.
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1.2.4 Biometric authentication

The use of handwritten signatures as a means of identity verification constitutes a subclass
of what is known as biometric authentication. The success of biometric authentication
relies on the belief that it is significantly more difficult to mimic a physiological or be-
havioural human trait than, for example, to obtain a key or uncover a password. A
selection of popular biometric authentication systems is categorised in Figure 1.5.

Biometric Authentication System

Physiological Behavioural

Fingerprint SignatureIris Voice sample

. . . . . .

Figure 1.5: Categorisation of popular biometric authentication systems.

Although biometric systems that are based on physiological traits (such as a face,
iris or fingerprint) provide a much greater level of accuracy than those based on be-
havioural traits (such as a handwritten signature or voice sample), the implementation of
a physiological biometric authentication system is often economically or computationally
infeasible. In addition, due to the invasive nature of a physiological system, use on the
general population is often considered inappropriate. As a result, the deployment of such
sophisticated systems is usually reserved for high-level security applications.

1.2.5 Handwritten signatures

Handwritten signatures, henceforth referred to only as signatures, have been considered
valid proof of identity and consent for centuries. The signing of the US Declaration
of Independence, presented as Figure 1.6, is epitomic of this social credence. Even in
our present day and age, dominated by advanced technological systems and protocols,
signatures remain the preferred method for identity verification, as they are both non-
intrusive and easily collectable.

According to Schmidt (1994), an indiviual’s signature is usually composed of stroke
sequences much unlike those used in ordinary handwriting and, in addition, tends to
evolve towards a single, unique design. This is not only as a result of repetition3, but also
the innate desire of each person to create a unique signature. Signatures are therefore
able to reflect a writer’s subtle idiosyncrasies to a much greater extent than ordinary
handwriting.

3Sustained repetition of a physical activity leads to the development of so-called muscle memories,
ensuring improved consistency in the case of signatures.
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Figure 1.6: The Declaration of Independence of the United States of America, as signed by

56 delegates of US Congress on July 4th, 1776.

1.2.6 Recognition and verification

A clear distinction should be made between systems developed for signature recognition

and those intended for signature verification.
A recognition system receives as input a signature of unknown origin. The system

then has to determine to which one of its finite number of enrolled writer classes the input
signature is a closest match. A Ω-class recognition system therefore needs to compare
its input to samples representative of each of its Ω writer classes before delivering a
probabilistic output as to the origin of the input signature.

A verification system, on the other hand, receives as input a signature of unknown
origin, but also a claim of ownership. The system then has to either confirm or reject
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the validity of this claim. In order to achieve this, the system compares the signature to
samples of the claimed owner, before delivering an output as to its certainty concerning
the validity of the claim of ownership.

Verification systems may therefore be viewed as a specific subclass of recognition
systems, namely bi-class recognition systems that classify input as belonging to either the
positive (genuine) or negative (forgery) class. As a result, there exists certain terminology
that is used to describe either system indiscriminately. During the course of this study, for
example, there are references to classifiers and classes, whilst it is implied that reference
is being made to verifiers and genuine/forged signatures, respectively.

1.2.7 Writer-dependent and writer-independent verification

In a writer-dependent verification scenario, there exists a unique, trained model Mω for
each writer ω enrolled into the system database. When the system receives a questioned
signature pattern X and claim of ownership ω, the pattern is matched with Mω, subse-
quently yielding a score reflecting the (dis)similarity between X and a typical signature
pattern used to train Mω. It should be made clear, however, that a global decision
threshold τ , as discussed in the next section, is used for verification purposes.

The writer-independent approach, on the other hand, performs verification using a
single model M , regardless of the number of writers enrolled in the system database.
This is achieved by attempting to model the difference between genuine signatures and
forgeries in general. Any classifier employing the writer-independent approach is therefore
trained using a set of modified feature vectors, known as difference vectors. In order to
construct such difference vectors, each writer ω provides a genuine signature pattern X

(ω)
k

as reference. Any pattern X(ω) belonging to or claimed to belong to writer ω, subsequently
presented to the system, is converted to the difference vector Z(ω) by computing

Z(ω) = D(X
(ω)
k ,X(ω)), (1.1)

where D(·) denotes any suitable distance measure.
In order to effectively model the difference between genuine signatures and forgeries

by using the writer-independent approach, though, one typically requires the efforts of a
discriminative classifier such as a neural network (NN) or support vector machine (SVM),
as both genuine signatures and forgeries are used during model training. For this reason,
the DTW and HMM base classifiers developed in this study employ a writer-dependent
modelling strategy.

1.2.8 Performance measures

During the course of this study, the performance measures false rejection rate (FRR), false
acceptance rate (FAR), average error rate (AER), equal error rate (EER), true positive

rate (TPR), false positive rate (FPR) and area-under-curve (AUC) are considered.
In order to define these measures, it is first necessary to define the set of possible

classification events. A false positive event occurs when a forgery, or negative instance, is
misclassified as belonging to the positive class, whilst a false negative event occurs when a
genuine signature, or positive instance, is misclassified as belonging to the negative class.
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Similarly, true positive and true negative events are indicative of the correct classification
of genuine signatures and forgeries, respectively. In an experimental scenario, we denote
the number of instances delivering the outcomes false positive, false negative, true positive
and true negative by F+, F−, T+ and T−, respectively. Furthermore, we denote the
number of genuine test signatures by n+, whilst the number of forged test signatures are
denoted by n−.

The FRR, or Type I error, refers to the number of false negatives in relation to the
number of genuine test signatures, or

FRR =
F−

n+
, (1.2)

whilst the FAR, or Type II error, refers to the number of false positives in relation to the
number of forged test signatures, or

FAR =
F+

n− . (1.3)

The AER simply refers to the average of the FRR and FAR. For continuous4 classifiers,
both the FRR and FAR may be manipulated by adjusting a global decision threshold τ

(see Section 4.2.2). As the FRR is decreased, the FAR increases, and vice versa. It is
therefore logical to expect that, for a certain τ -value, the FRR and FAR will coincide, as
illustrated in Figure 1.7 (a). This value, known as the EER, is a commonly used quality
performance measure throughout the literature.

Another platform used to gauge system performance, which has gained considerable
popularity during recent years, is the receiver operating characteristic (ROC) curve. A
ROC-curve is obtained by plotting the TPR, defined as

TPR =
T+

n+

= 1− FRR, (1.4)

against the FPR, for all vales of τ . The FPR is synonymous to the FAR. Each point in
ROC-space, denoted by (f+

i (τ), t+i (τ)), therefore represents the FPR-TPR pair associated
with a τ -specific discrete classifier Ci(τ). It should be clear that one may also obtain
the EER associated with a continuous classifier from its corresponding ROC-curve, as
illustrated in Figure 1.7 (b).

One of the fundamental ROC-based performance measures associated with a contin-
uous classifier is its corresponding AUC. This measure is defined as the area spanned by
the convex hull of each point on the ROC-curve and the ROC-point (1,0). The AUC
associated with a continuous classifier may be interpreted as the probability that the
classifier will rank a randomly chosen positive instance higher than a randomly chosen
negative instance.

Therefore, by employing the EER and AUC as performance measures, an ROC-curve
enables one to graphically represent a system’s typical discriminative ability, whilst si-
multaneously being capable of illustrating overall system stability. Furthermore, it is

4A classifier is said to be continuous if it produces a probabilistic estimate regarding a test pattern’s
class membership, to which different thresholds may be applied, in order to assign a class label. A discrete
classifier, in contrast, produces a predicted class label only, and is associated with a single threshold.
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very convenient to represent performance as a function of the FPR, since it is often
desirable to predefine a maximum allowable FPR, especially in cost-sensitive scenarios.
For a comprehensive overview regarding ROC analysis, the reader is referred to Fawcett
(2006). The various quality performance measures considered in this study are illustrated
in Figure 1.7.
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Figure 1.7: Hypothetical representations of the performance measures associated with two

continuous classifiers CA and CB . (a) The FRR, FAR and EER. (b) The ROC-curve and AUC

measure, as well as the EER-based optimal discrete classifier CB(τ∗).

1.2.9 On-line and off-line signatures

The field of automatic signature verification may currently be divided into two distinct
sub-categories, namely those systems concerned with on-line signature verification and
those concerned with off-line signature verification.

In the on-line scenario, signature data is captured in real time by means of an electronic
pen and digitising tablet, yielding not only pen stroke coordinates, but also dynamic
signature data such as pen pressure, velocity and acceleration. On-line signatures are
therefore also commonly referred to as dynamic signatures.

In the off-line scenario, ink-signed documents require digitisation by means of a scan-
ning device. The obtained signature image therefore only provides the coordinates of
pixels representative of pen strokes. During the course of this study, it is assumed that
all signature images are in binary format. All pen stroke pixels are therefore repre-
sented by 1, whilst a pixel value of 0 denotes the image background. Various static and
pseudo-dynamic features may subsequently be extracted from the obtained image. For
this reason, off-line signatures are also referred to as static signatures.
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Apart from the fact that a static signature yields considerably less information than its
dynamic counterpart, it may also suffer from the presence of background noise generated
during the digitising process. A greater degree of variability also exists with regard to the
physical structure of a static signature, as the effect of using different writing instruments
and surfaces becomes apparent.

Due to the nature of static features and the adverse effect of background noise, on-line
verification systems are, in general, a great deal more reliable than off-line systems. The
incorporation of intelligent image processing and feature extraction techniques, as well
as robust classification models, are therefore key to the success of any off-line verification
system.

1.2.10 Forgery types

In the context of off-line signatures, forgeries may generally be categorised as either
random, simple or skilled, in increasing order of quality. Furthermore, skilled forgeries
may be sub-categorised as either amateur or professional, as illustrated in Figure 1.8.

Forgery

Random Simple Skilled

Amateur Professional

Figure 1.8: Categorisation of several off-line forgery types, increasing in quality from left to

right.

In this section we discuss the key requirements for forgery categorisation. Each dis-
cussion also provides a typical example of when such a forgery type may be encountered
in practise, within the context of cheque fraud. Graphical examples of selected forgery
types are provided in Figure 1.9.

Random forgeries

Random forgeries encompass any arbitrary attempt at forging a signature, generally
without prior knowledge of the owner’s name. This type of forgery may constitute random
pen strokes and is usually easy to detect. For experimental purposes, genuine signatures
from writers other than the legitimate owner are commonly used to represent random
forgeries.

A random forgery is typically expected when a cheque book is registered to a company
or institution, rather than a specific individual. The forger therefore has no information
regarding the name of an authorised signer. This impediment, however, usually applies
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to the cheque’s recipient as well, as the unauthorised signing is only detected upon sub-
mission to the appropriate banking institution.

This type of forgery is, however, not limited only to cheques withholding personal
information. In some instances, random forgeries are produced by casual criminals who,
unbelievable as it may seem, simply do not go through the effort of looking at the owner’s
name.

Simple forgeries

In the case of simple forgeries, the forger’s knowledge is restricted to the name of the
signature’s owner. Due to the arbitrary nature of signature design, simple forgeries may in
some cases bear an alarming resemblance to the writer’s genuine signature. In such cases,
more sophisticated systems, able of detecting subtle stylistic differences, are required in
order to distinguish between genuine signatures and forgeries of this type.

Simple forgeries usually result from forging a cheque, lost or stolen, registered to
an unknown individual. As the name of the legitimate owner is printed on the cheque
itself, an effort can be made to produce a realistically expected representation of the
genuine signature. No writer stylistic information can be incorporated, though. This
type of forgery is generally associated with a brief period of forged cheques, each with a
relatively small value. This is due to the fact that a simple forger generally attempts to
avoid the attention associated with processing exceedingly large cheques or the usage of
a cheque book reported as lost/stolen.

Skilled forgeries

In some instances, the forger is not only familiar with the writer’s name, but also has
access to samples of genuine signatures. Given ample time to practice signature repro-
duction, he is able to produce so-called skilled forgeries.

The vast majority of skilled forgeries may be categorised as amateur, as this type
of forgery may be produced by any given individual. In contrast, to produce a profes-
sional skilled forgery, the forger typically requires a certain amount of knowledge regard-
ing forensic document analysis. This enables the forger to mimic subtle writer-specific
idiosyncrasies, thereby producing a forgery far beyond the capabilities of the average
individual.

Skilled forgeries are undoubtedly the most difficult to detect, especially by untrained
humans. As the production of a skilled forgery involves both planning and effort, similar
effort is required to enforce sufficient countermeasures - typically a sophisticated auto-
matic signature verification system. The ability to produce skilled forgeries constitutes
the greatest threat to legitimate cheque processing, as an unacceptable number of forged
cheques go undetected. Furthermore, the involvement of professional skilled forgers may
facilitate large-scale corporate fraud, potentially causing crippling losses to high-profile
businesses.
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(a)
(b)

(c) (d)

Figure 1.9: Typical examples of (a) a genuine signature, as well as (b) professional skilled, (c)

amateur skilled and (d) random forgeries.

1.3 Objectives

During the course of this study, we aim to achieve two primary objectives, namely the
successful design and implementation of:

• a novel feature extraction technique, utilising the flexible grid segmentation strategy
proposed in this study.

• a robust off-line signature verification system, utilising the efforts of either a score-
based or decision-based combined classifier. This combined classifier is to be con-
structed from an ensemble of DTW and HMM base classifiers.

Furthermore, we investigate the feasibility and significance of a novel classifier ensem-
ble combination strategy proposed in this study. This strategy performs ROC-based
combination of an ensemble of continuous classifiers by utilising an existing classifier
combination algorithm that is designed for continuous classifier pairs only.

1.4 System overview

In this study we combine an ensemble of continuous base classifiers, in order to obtain
a superior combined classifier. Each base classifier utilises a different type of feature, as
well as a different modelling strategy.

This section provides a condensed review of the DTW and HMM base classifiers
developed in this study, as well as the strategies employed to combine said base classifiers.
The general schematics of such a combined classifier is provided in Figure 1.10.

Each base classifier, as illustrated in Figure 1.11, provides fundamentally different
capabilities regarding signature analysis, thereby facilitating greatly superior ensemble
performance.
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Figure 1.10: Schematic representation of a combined classifier ensemble as developed in this

study. Each entity Ci represents a separate base classifier, as illustrated in Figure 1.11.
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Figure 1.11: Schematic representation of a base classifier as developed in this study. The

writer model entity therefore represents either an HMM or a signature template for DTW.
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1.4.1 System design

The DTW and HMM base classifiers employ the same basic approach to the pattern
recognition process, differing only in their signature matching techniques. Unless stated
otherwise, the topics reviewed in this section may therefore be viewed as part of either
a DTW-based or HMM-based approach to signature verification. As a result, reference
is often made to “the base classifiers”, which may denote either DTW or HMM base
classifiers.

Image processing

In order to achieve efficient signature modelling for each writer enrolled into the system,
certain image preprocessing is required. Grid-based image segmentation is performed
on each signature image, consequently yielding suitable input for the feature extrac-
tion process. Two segmentation strategies are considered, namely traditional rigid grid
segmentation, as found in the literature, as well as flexible grid segmentation, a novel
strategy proposed in this study. Both of these segmentation strategies ensure feature
vector representations that are invariant with respect to translation and scale.

Feature extraction

The base classifiers consider the same set of grid-based features for signature modelling.
These features include pixel density, gravity centre distance, orientation and predomi-
nant slant. By employing grid-based feature extraction techniques, complete and robust
feature-specific profiles are created in ℜd for each signature pattern presented to a base
classifier.

In addition, since the HMM base classifiers are designed for discrete observation se-
quences only, vector quantisation (VQ) is performed on the feature set during post-
processing, by means of the K-means clustering algorithm.

Signature modelling

The base classifiers consider two fundamentally different approaches to modelling a
writer’s signature.

The DTW base classifiers construct writer-dependent models based on template match-
ing techniques. As a result, each writer is modelled using the single observation se-
quence found to be the most representative during training. Writer-dependent models
constructed using the DTW-based approach are well equipped to compensate for intra-
class variability, as feature vectors are non-linearly aligned prior to matching.

The HMM base classifiers adopt a stochastic approach to signature modelling, con-
structing writer-dependent models on the basis of minimum distance statistics. Each
writer is modelled using a left-right discrete HMM. Writer-dependent models constructed
using an HMM-based approach generally possess a discriminative ability which is superior
to their DTW-based counterparts, as the relationships between consecutive observations
within a sequences are also modelled.

All signature models constructed in this study include a set of training statistics based
on the mean and standard deviation of classifier scores observed during model training.
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These statistics describe the level of variability present in each writer’s feature profile
and play a critical role during score normalisation.

Verification

The base classifiers are aimed at the detection of amateur skilled forgeries. When a
questioned signature, along with a claim of ownership, is submitted for verification, a
base classifier matches said signature to the model trained for the claimed owner. This
process provides a measure of dissimilarity between the test signature and a typical
genuine signature used to train the writer-dependent model.

The DTW base classifiers calculate dissimilarity by computing the average distance
between the set of non-linearly aligned feature vectors belonging to the questioned sig-
nature and the reference signature for the claimed owner.

The HMM base classifiers match a questioned signature to a writer model by means of
Viterbi alignment, consequently yielding a probabilistic measure of ownership. By taking
the negative log-likelihood of this probability, a dissimilarity measure is obtained.

The base classifiers subsequently convert the obtained dissimilarity measure into a
confidence score, by using a sigmoidal score normalisation function. This normalisation
technique utilises the writer statistics determined during model training.

Finally, a global decision threshold is imposed. If and only if the confidence score
obtained for a questioned signature is equal to or greater than the required threshold
value, the claim of ownership is accepted.

Classifier combination

In order to combine the classifier ensemble constructed from these base classifiers, several
classifier combination strategies are considered.

One score fusion technique, namely score averaging (SA), is investigated. The effi-
ciency of this method is greatly increased by the sigmoidal score normalisation function
utilised in this study. Two decision fusion techniques are also investigated, namely the
popular majority vote (MV) rule and a novel elitist maximum attainable ROC (MAROC)
classifier ensemble combination strategy.

In constructing a classifier ensemble, any number of base classifiers may be utilised,
regardless of their feature extraction or signature modelling techniques. The optimal
ensemble composition is determined experimentally.

Performance evaluation

The success of classifiers developed in this study is evaluated using two fundamentally
different performance measures, namely the AUC and EER.

The AUC is used as primary performance measure, as it represents an accurate mea-
sure regarding overall performance of a continuous classifier. During experimentation,
one classifier is said to outperform another if it yields a greater AUC-value.

The reasoning behind utilising the EER as secondary performance measure is two-fold.
Firstly, the EER is used to rank classifiers possessing equal AUC measures. Secondly, as
the EER is currently the most common indication of system performance found in the
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literature, it enables us to place the performance of the systems developed in this study
into a familiar context.

An important issue which is addressed during experimentation is that of over-fitting,
which is averted by using separate subsets of signature data for model training, op-
timisation and evaluation. This data partitioning, used in conjunction with a k-fold
cross-validation protocol, greatly increases the credibility of the reported results, as each
classifier’s generalisation potential is also scrutinised.

1.4.2 Data

The classifiers developed in this study are optimised and evaluated using the signature
database henceforth referred to as Dolfing’s data set. This ideal5 data set, containing
approximately 4800 signatures collected from 51 different writers, is composed of on-
line signature data, originally used by Dolfing (1998), and subsequently converted into a
suitable off-line representation by Coetzer (2005).

Since the system developed by Coetzer et al. has previously been evaluated using
this data set, it also provides a relevant benchmark for the performance of the classifiers
developed in this study. Dolfing’s data set is discussed in Section 6.2.

1.4.3 Results

The performance achieved by the base classifiers and combined classifiers developed in
this study, when assessed using Dolfing’s evaluation set (see Section 6.3.1), is summarised
in Tables 1.1 and 1.2, respectively. Performance is measured using the AUC and EER,
as well as the generalisation error ǫ (see Section 6.3.3).

Performance
DTW HMM

PD GCD ORT PS PD GCD ORT PS
AUC (%) 89.90 89.98 89.62 92.35 92.81 90.07 90.40 90.85
EER (%) 18.30 18.14 18.55 14.24 14.43 17.82 16.21 16.73
ǫ (%) 1.22 1.04 1.77 0.96 0.74 -0.08 1.06 1.50

Table 1.1: Summary of results obtained for the set of base classifiers.

The DTW (HMM) base classifier utilising the PS (PD) feature significantly outper-
forms its peers. Furthermore, the set of HMM base classifiers generally outperforms the
set of DTW base classifiers, both in terms of verification proficiency and generalisation
potential.

The majority vote combined classifier slightly outperforms its peers. Furthermore,
the set of combined classifiers significantly outperforms the set of base classifiers.

5Dolfing’s data set is considered ideal, as it was originally captured on-line. Each signature image
is therefore free of background noise, whilst also possessing uniform stroke width. Furthermore, each
writer’s set of training signatures share a similar baseline orientation.
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Performance SA MV MAROC
AUC (%) 95.06 95.80 94.04
EER (%) 11.21 10.23 12.54
ǫ (%) 1.15 1.05 3.65

Table 1.2: Summary of results obtained for the set of combined classifiers.

1.5 Contribution of this study

During the course of this study, a collection of novel concepts and techniques are de-
veloped. Each of these techniques constitutes an extension of the current state of the
art, thereby providing a contribution to the field of off-line signature verification. We
experimentally verify the contribution made by each presented technique in Section 6.5.

1.5.1 A novel feature extraction technique

The use of grid-based feature extraction techniques has proved very popular during recent
years, as the extraction of local features allows signature analysis on a stroke and sub-
stroke level.

In this study we propose an extension of the current fixed-resolution rigid grid-based
feature extraction technique, which we refer to as the flexible grid-based feature extraction
technique. In this strategy, after constructing a traditional rigid segmentation grid, each
grid cell boundary is dilated by a predefined factor, thereby allowing adjacent grid cells
to overlap. In this manner, the flexible grid-based feature extraction technique not only
allows stroke and sub-stroke signature analysis, but also inherently provides information
regarding signature progression on a global scale.

This simulated time-evolution, not sufficiently provided by the rigid grid-based ap-
proach, greatly increases the robustness of modelling techniques such as DTW, where no
information regarding signature progression is incorporated into model training. The im-
provement achieved when using an HMM base classifier is less significant, as the issue of
time-evolution is sufficiently addressed during model training. Nevertheless, a consistent
improvement is observed.

1.5.2 A novel classifier ensemble combination strategy

The set of three combined classifiers developed in this study utilise both score-based and
decision-based fusion strategies. The SA and MV combined classifiers represent popular
fusion techniques and are well documented throughout the literature. The third, an elitist
MAROC-based classifier ensemble combination strategy, although based on an existing
ROC-based combination strategy, is yet to be reported in the literature. To the best of
our knowledge, this strategy may therefore be considered novel.

The ROC-based combination of a continuous classifier pair, originally proposed by
Haker et al. (2005), combines every threshold-specific discrete classifier contained in one
continuous classifier with every threshold-specific discrete classifier contained in the other.
Each discrete classifier pair is combined by either adopting one of their decisions exclu-
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sively, or by using the well-known AND or OR rule. The appropriate combination scheme
is determined by maximum likelihood analysis of each discrete classifier’s ROC-statistics.
A single continuous classifier can then be selected from the resulting pool of discrete
classifier combinations. This combined classifier performs optimally when constructed
from two continuous classifiers producing conditionally independent decisions, since this
assumption is made during maximum likelihood estimation, which consequently deter-
mines the optimal classifier combination rule.

Although the ROC-based strategy is well suited for the pairwise combination of contin-
uous classifiers, the computational cost involved renders it infeasible for the combination
of continuous classifier ensembles. In this study we propose the iterative combination of
a classifier ensemble, using a similar approach. During the first iteration, the ROC-based
strategy is used to combine the first pair of continuous classifiers. Each subsequent it-
eration, however, combines an additional continuous classifier with the MAROC-based
representation of the previous iteration, thereby significantly reducing the computational
cost. Using this MAROC-based strategy, the set of continuous classifiers contained in
the ensemble are combined from least proficient to most proficient, thereby minimising
the amount of potentially valuable discrete classifiers discarded during the combination
process. In addition, unlike the SA or MV fusion strategies, the MAROC-based combi-
nation strategy is insensitive to the inclusion of a relatively inaccurate base classifier into
the ensemble.

1.5.3 A novel off-line signature verification system

By employing the flexible grid-based feature extraction technique proposed in this study,
each classifier developed in this study may be considered as novel.

Furthermore, we compare the performance of the optimal combined classifier devel-
oped in this study to the systems developed by Dolfing (1998) and Coetzer et al. (2004),
wherein EERs of 13.3% and and 12.2% are reported, respectively. Since both these sys-
tems were evaluated using amateur skilled forgeries from Dolfing’s data set, they are
deemed suitable for comparison. In this study, the MV combined classifier is found to be
most proficient, yielding an EER of 10.23%, thereby constituting a credible improvement.

1.6 Thesis outline

Chapter 2: Literature Study discusses selected previous works pertaining to off-line
signature verification, thereby providing the reader with a contextual perspective regard-
ing the range of available techniques and corresponding levels of success achieved.
Chapter 3: Image Processing and Feature Extraction discusses how the base
classifiers developed in this study convert raw signature images into robust feature vec-
tor representations by means of intelligent grid-based segmentation strategies and local
feature extraction techniques. Also discussed is the process of vector quantisation.
Chapter 4: Signature Modelling and Verification explains how each of the base
classifiers developed in this study constructs a writer-dependent signature model, as well
as the methodology considered for subsequent verification of an unknown signature.
Chapter 5: Classifier Combination discusses several strategies, as found in the liter-
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ature, for combining the efforts of the previously developed base classifiers. In addition,
a novel classifier ensemble strategy, as proposed in this study, is introduced. By utilising
any of these combination strategies, a superior combined classifier is obtained.
Chapter 6: Experiments discusses the data and experimental protocol considered
during training, optimisation and evaluation of the classifiers developed in this study.
Results yielded by the collection of base classifiers and combined classifiers are also pre-
sented. In addition, the contributions made by the novel concepts proposed in this study
are verified experimentally.
Chapter 7: Conclusion and Future Work presents concluding remarks regarding the
complexity and effectiveness of the systems developed in this study. Selected additional
topics deemed to be potentially beneficial to the systems developed during this study are
also presented as possible future work.



Chapter 2

Literature Study

“If I have seen further it is by standing on the shoulders of giants.”
- Isaac Newton (1642–1727)

2.1 Introduction

The field of off-line signature verification has enjoyed a great deal of attention over the past
few decades. In this chapter we present a collection of verification systems proposed over
the years. Although some of these systems may seem dated, they represent noteworthy
efforts in the field and also provide the reader with a historical perspective regarding
advances made in recent years. For a comprehensive discussion regarding the current
state of the art, the reader is referred to Impedovo and Pirlo (2008).

The systems presented in this chapter are based on a wide variety of pattern recogni-
tion techniques, namely simple distance classifiers (Section 2.2), dynamic time warping
(Section 2.3), hidden Markov models (Section 2.4), neural networks (Section 2.5) and
support vector machines (Section 2.6). In addition, selected works pertaining to classifier
combination are also discussed in Section 2.7.

Unfortunately, there exists at present no standard library of off-line signatures for
verification purposes, and therefore no truly objective benchmark regarding results ob-
tained by any of the systems mentioned. Results reported by the various authors do
nonetheless provide the reader with a general idea regarding the effectiveness of their
proposed feature extraction techniques and verification strategy.

The discussion of each system is chronologically categorised according to the pri-
mary method used for verification, and includes the year of publication and author(s)
associated. Each of the possibly numerous features considered is also discussed. Where
possible, the nature and composition of the data sets used for training and testing are
mentioned, as well as the verification results reported.

2.2 Simple distance classifiers

A simple distance classifier (SDC) models each pattern class with a probability density
function (PDF), typically Gaussian, and subsequently relies on the distance computed
between a test pattern and such a PDF in order to make a classification.

21
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Fang et al. (2001) propose a method based on the so-called smoothness criterion,
since the authors suggest that the cursive segments of forgeries are generally less smooth
than those of genuine signatures. Two approaches are proposed for extracting such a
smoothness feature. The crossing method involves comparing each stroke segment to
its smoothed version, obtained by performing a second-order cubic spline smoothing
operation. The second method employs the fractal dimension of each stroke segment
to evaluate its smoothness. The obtained smoothness feature is then combined with
various global shape features. These include the signature aspect ratio, baseline shift
of the vertical projection, the percentage of positively slanted border pixels, as well as
the percentage of vertically slanted border pixels. Verification is achieved by means of
an SDC based on the Mahalanobis distance. The database considered consists of 1320
genuine signatures and 1320 amateur skilled forgeries. An FRR of 18.1% and FAR of
16.4% is reported.

Majhi et al. (2006) implement a novel feature extraction method based on geometric
centres. Features are obtained by recursively dividing a signature image into sub-images
along horizontal and vertical axes located on the geometric centre of the parent image.
Geometric centres of the final sub-images subsequently form the feature vector. An
Euclidean distance model is used for classification on a database containing 30 genuine
signatures, 10 random forgeries, 10 simple forgeries and 10 skilled forgeries per writer.
The number of writers considered during testing is not disclosed. The authors reportedly
achieve FARs of 2.08% (random forgeries), 9.75% (simple forgeries) and 16.36% (skilled
forgeries), associated with an FRR of 14.58%.

2.3 Dynamic time warping

The DTW algorithm is a popular template matching technique based on dynamic pro-
gramming and is discussed further in Section 4.3 and Appendix A.

Coetzer (2005) utilises DTW in order to construct a verification system aimed at
detecting skilled and simple forgeries. Signature representation is achieved by means of
the discrete Radon transform (DRT). Experiments are performed on the Stellenbosch

data set, collected from 22 writers, containing 30 genuine signatures, 6 simple forgeries
and 6 skilled forgeries per writer. The author reports EERs of approximately 18% and
4.5% when considering skilled and simple forgeries, respectively.

Shanker and Rajagopalan (2007) use a DTW algorithm which is modified to incorpo-
rate a stability factor, in conjunction with a vertical projection feature. Their signature
database, collected from 100 individuals, includes 1075 genuine signatures, 300 simple
forgeries, as well as 56 skilled forgeries. The authors reportedly achieve an FRR of 25%
and FARs close to 0% and 20% when considering simple and skilled forgeries, respectively.

Güler and Meghdadi (2008) also optimise the basic DTW algorithm in order to de-
tect skilled and random forgeries. Each signature image is converted into a numerical
sequence, or gradient stream, of localised pixel gradients based on a 4-directional axis.
The data set considered is a sub-corpus of the MCYT bimodal database and contains
1000 genuine signatures and 500 skilled forgeries from 50 individuals. EERs of 25.1%
(skilled forgeries) and 5.5% (random forgeries) are reported.



CHAPTER 2. LITERATURE STUDY 23

2.4 Hidden Markov models

An HMM models each pattern class using a sequence of observations, along with the
relationship between individual observations within such a sequence, and is discussed
further in Section 4.4 and Appendix B.

Coetzer et al. (2004) propose the combination of an HMM-based verifier with DRT-
based features. By constructing an HMM utilising a ring topology, rotation invariance
is achieved. The system is tested on the Stellenbosch data set (as discussed in the
previous section), as well as Dolfing’s data set (as considered in this study). Experiments
performed on the Stellenbosch data set reportedly yield EERs of approximately 18%
and 4.5% when skilled and simple forgeries are considered, respectively. An EER of
12.2% is reported when considering only amateur skilled forgeries from Dolfing’s data
set. Considering only professional skilled forgeries from Dolfing’s data set reportedly
yields an EER of 15%.

Oliveira et al. (2005) investigate the use of grid segmentation in conjunction with
the graphological features pixel density, pixel distribution, progression, slant and form.
Experiments are performed on a database collected from 60 individuals, including 2400
genuine signatures, 1200 random forgeries, 600 simple forgeries and 600 skilled forgeries.
Feature-specific EERs of 7.87% (pixel density), 7.65% (pixel distribution), 7.92% (slant),
9.15% (progression) and 11.30% (form) are reported.

Wen et al. (2009) combine the efforts of a ring-structured HMM with a set of ring-
peripheral features based on a transformation-ring-projection. The system is evaluated on
a data set containing 2640 signatures, of which 1320 are skilled forgeries, representative of
55 individual writers. The authors report an EER of 11.4%. Furthermore, the system is
also tested using a sub-corpus of the MCYT bimodal database, containing 2250 signatures
from 75 individuals, resulting in an EER of 15.02%.

2.5 Neural networks

Artificial NNs may generally be described as adaptive parallel computing systems, com-
posed of a multitude of interconnected non-linear computing elements. The primary
advantage of an NN is that it can be used to model complex input-output relationships,
as it is able to adapt its structure based on information encountered during the learning
phase. As a result, the use of NNs for the purposes of signature verification has gained
considerable popularity during recent decades.

Huang and Yan (1997) propose a verification system based on geometric feature ex-
traction of localised, aligned shape features. A composite neural network classifier, con-
sisting of several independent feature networks, as well as a single decision network, is also
investigated. The system is tested on a data set which contains 504 genuine signatures
and 3024 forgeries of varying skill levels, representative of 21 individual writers. The
authors reportedly achieve an FAR marginally below 0.05% when only random forgeries
are considered, whilst an AER of 11.45% is achieved when considering skilled forgeries.

Baltazakis and Papamarkos (2001) propose the use of a two-stage neural network
classifier. The first stage, utilising global, grid and texture features, generates decisions
which in turn serve as input to the second stage. This second stage, comprising a radial
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basis function (RBF) network structure, subsequently makes the final decision. The
system is tested on a data set consisting of approximately 2000 signatures representative
of 115 writers. The authors report an FAR and FRR of 9.81% and 3%, respectively.

Armand et al. (2006) employ a novel combination of the modified direction feature
with additional distinguishing features such as the image centroid, surface area, length
and skew. Using the aforementioned feature set, they compare the performance of a
resilient back-propagation (RBP) NN with that of an RBF-NN. The systems are tested
on a subset of the GPDS signature database, containing 936 genuine signatures and 1170
forgeries of unspecified quality, representative of 39 writers. Verification accuracies of
91.21% and 88.0% are reported when using the RBP-NN and RBF-NN, respectively.

2.6 Support vector machines

SVMs represent a special class of linear classifiers. In order to classify a pattern as
belonging to one of two classes, an SVM constructs a hyperplane in the feature space,
such that it maximally separates the margin between the two classes. For this reason,
SVMs are also referred to as maximum margin classifiers.

Lv et al. (2005) investigate the feasibility of combining static and pseudo-dynamic
features in their novel SVM-based system, developed specifically for the purpose of Chi-
nese signature verification. Static features considered include moment features and a
16-directional pixel distribution feature, whilst gray distribution and stroke width distri-
bution constitute the pseudo-dynamic feature set. Their experiments are performed on a
database representative of 20 writers, containing 25 genuine signatures and 30 amateur
skilled forgeries per writer. An AER of about 5% is reported.

2.7 Combined classifiers

The verification systems discussed in the previous sections each employ a single classifi-
cation technique. In recent years, however, the notion of utilising a set of classifiers in a
single verification system has gained notable popularity. The use of such combined clas-
sifiers of course yields more stable and accurate systems, but may have been considered
computationally exhaustive in the past. In the modern computing environment, however,
combined classifiers are both computationally viable and economically attractive.

Santos et al. (2004) develope a writer-independent combined classifier utilising grapho-
metric features and a set of NN base classifiers. The signature modelling and verification
protocols of this system are based on the questioned document expert’s approach. Each
writer submits a relatively small reference set of genuine signatures for model training
and validation. A separate data set is used for model evaluation. During verification
of a questioned signature, each signature in the reference set is independently compared
to the questioned signature using a NN classifier, consequently yielding a set of partial
decisions. The final decision is obtained by combining these partial decisions using the
majority vote rule. Model evaluation is performed using a data set containing 600 genuine
signatures (of which 300 are used as reference), 300 random forgeries, 300 simple forgeries
and 300 skilled forgeries. The authors report an FRR of 10.33%, associated with FARs
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of 15.67% (skilled forgeries), 1.67% (simple forgeries) and 4.41% (random forgeries).
Oliveira et al. (2008) also propose a writer-independent combined classifier. This

system utilises the grid-based predominant slant and pixel distribution features, each
associated with an SVM classifier. Separate data sets are used for model optimisation
and evaluation. In addition, the experimental protocol employs 10-fold cross-validation.
The use of several score fusion techniques, as well as the majority vote rule, is investigated
as a potential combination strategy. Optimal classifier combination is achieved, however,
when considering the ROC-based combination of their continuous classifier pair. Model
evaluation is performed using a data set containing 600 genuine signatures (of which 300
are used as reference), 300 random forgeries, 300 simple forgeries and 300 skilled forgeries.
It is suspected, although not confirmed, that this is the same data set used by Santos
et al. (2004). The ROC-based combined classifier reportedly yields an FRR of 4.7%,
associated with FARs of 1.12% (skilled forgeries), 1.33% (simple forgeries) and 2.04%
(random forgeries).

2.8 Concluding remarks

As mentioned earlier, no standard library of signature data is currently available for ver-
ification purposes. Any results reported in this chapter therefore provide only a relative
measure of success achieved by the authors. Nevertheless, the collection of systems dis-
cussed does illustrate the availability of a wide range of techniques and models suitable
for the successful implementation of a signature verification system.

Several works found in the literature are, however, of particular interest to the concepts
investigated during the course of this study. The utilisation of a grid-based segmentation
scheme coupled with local features, as discussed in Justino et al. (2000), Justino et al.

(2005) and Oliveira et al. (2005) (see Section 2.4), for example, serve as a foundation
for the development of the flexible grid-based feature extraction techniques proposed in
this study. In addition, the discussion on ROC-based classifier combination by Oliveira
et al. (2008) led to the development of the MAROC-based classifier ensemble combination
strategy proposed in this study.

Also of particular interest is the work of Coetzer et al. (2004), as this system utilises
an HMM-based classifier evaluated on the same data set considered in this study. The
results reported therefore constitute a realistic, although somewhat relative1, benchmark
for the results reported in this study.

In Chapters 3 and 4, we discuss the various stages comprising the design and imple-
mentation of the base classifiers developed in this study. Chapter 5 presents the classifier
combination strategies implemented on the resulting classifier ensemble.

1The system developed by Coetzer et al. does not adhere to the same experimental protocol considered
in this study. Certain discrepancies may therefore be expected if the results are to be compared directly.



Chapter 3

Image Processing and Feature
Extraction

“The laws of nature are written in the language of mathematics . . . the symbols are

triangles, circles and other geometrical figures, without whose help it is impossible to

comprehend a single word.”
- Galileo Galilei (1564–1642)

3.1 Introduction

The process of feature extraction constitutes one of the fundamental components of the
pattern recognition process, as it enables a verification system to represent signature
patterns in an intelligent and robust manner. The feature vector representation generated
by this process may subsequently be used to train a suitable classification model.

In this chapter we explain how the DTW and HMM base classifiers developed in
this study convert a raw signature image into a suitable feature vector representation.
In Section 3.2, we present an efficient noise removal algorithm and show that it is well
equipped to successfully remove both standard impulse noise and high density impulse
noise regions. In Section 3.3.1, we discuss the traditional rigid grid-based image segmen-
tation strategy, whilst Section 3.3.2 introduces the flexible grid segmentation strategy - a
novel extension of the rigid grid-based approach. We show that each of these segmenta-
tion strategies ensures a feature vector representation that is both translation and scale
invariant. The issue of rotation invariance is not addressed in this study, as the data set
used during experimentation (see Section 6.2) is already normalised in this regard.

The set of grid-based feature extraction techniques considered in this study is dis-
cussed in Sections 3.4.1–3.4.4. In Section 3.4.5, we explain how the aforementioned
segmentation and feature extraction techniques are combined, in order to construct a set
of suitable feature vectors. Finally, Section 3.5 provides a discussion on vector quanti-
sation as essential feature vector post-processing, required specifically by the HMM base
classifiers developed in this study.

26
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3.2 Noise removal

As mentioned in Section 1.4.2, the data set considered in this study is completely free of
background noise and therefore requires no preprocessing with respect to noise removal.
In any practically deployable verification system, however, the process of noise removal
constitutes an integral and generally unavoidable preprocessing stage. For this reason, the
successful incorporation of an efficient noise removal algorithm is deemed fit for discussion
within the context of this study.

During the document digitisation process, it is possible that unwanted foreign ob-
jects, such as dust or ink residue, are present in the obtained signature image. These
pixel anomalies often adversely affect the successful completion of both the signature
segmentation and feature extraction processes, as they contribute shape information not
pertaining to the signature being represented.

A popular and effective means of achieving noise removal is by implementation of the
adaptive median filter (AMF), an extension of the well known order-statistics median
filter. As is its predecessor, the AMF is well suited for removing impulse noise. Fur-
thermore, as it makes use of a dynamically adjustable filter window, it is also capable
of removing noise regions possessing a higher spatial density. Perhaps the greatest ad-
vantage of using the AMF, however, is the fact that it is, unlike the median filter, detail
preserving.

As suggested in Swanepoel (2007), however, it is suspected that non-uniform stroke
width greatly impedes the level of success achieved by the AMF. Observations indicate
that the optimal maximum dimensions of the adjustable filter window are linearly pro-
portional to the stroke width. By letting this user-defined parameter exceed a certain
threshold, one risks decimating image segments belonging to the signatures themselves,
consequently destroying valuable shape information.

For a comprehensive discussion of the AMF-algorithm, as illustrated in Figure 3.1,
the reader is referred to Gonzalez and Woods (2002).

3.3 Signature segmentation

During the course of this study, two signature segmentation strategies are considered.
These include the traditional grid segmentation scheme, as well as a novel extension of
the grid-based approach, referred to as flexible grid segmentation. In order to avoid
confusion, the traditional grid segmentation strategy is henceforth explicitly referred to
as rigid grid segmentation.

3.3.1 Rigid grid segmentation

The use of grid-based segmentation strategies have gained notable popularity during
recent years. At present, there exists two distinct methods regarding segmentation grid
construction, each with its own set of benefits and limitations. The first is based on a
fixed grid cell size, whilst the second is based on a fixed grid resolution. In general, the
feature extraction technique and classification model considered dictates which of these
strategies is appropriate. In this study, the latter approach is deemed most suitable, as
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(a)

(b) (c)

Figure 3.1: Signature image noise removal by means of the AMF, as implemented by Swanepoel

(2007). (a) A signature image containing synthetically generated impulse noise, as well as high

density noise regions. (b) The corrected image, as obtained by implementing the standard

median filter. Although the impulse noise is successfully removed, the median filter is incapable

of correcting areas possessing high density noise. (c) The corrected image, as obtained by

implementing the AMF. Practically all traces of noise have been removed

it not only enables complete control of both the observation sequence length and feature
space dimension (see Section 3.4.5), but also plays an important role in ensuring scale
invariant feature vectors.

The first step in constructing such a segmentation grid involves calculating an appro-
priate grid perimeter. This is achieved by obtaining the signature bounding box, thereby
isolating only pixels representative of pen strokes. The importance of an efficient noise
removal algorithm should now become apparent, as any noise present in the outer regions
of a signature image would greatly impair the construction of a suitable grid perimeter.
The successful construction of such a perimeter not only enables a feature extraction
algorithm to discard the image regions which contribute no shape information, but also
ensures that any resulting feature vectors remain translation invariant.

The signature image region I contained within such a bounding box is subsequently
divided into a set of sub-images {Iij}, where i = 1, 2, . . . ,M and j = 1, 2, . . . , N , whilst
M and N denote the number of rows and columns contained within the segmentation
grid, respectively. Since all grid cells are constrained to be equally sized, it is possible
that the initial grid perimeter may need to be adjusted accordingly, resulting in a small
percentage of pixels located on the extremities of the signature image to fall outside
the modified grid perimeter. This percentage of potential data loss, however, is deemed
negligible. The rigid grid segmentation process is illustrated in Figure 3.2.
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(a) (b)

(c)

Figure 3.2: The rigid grid segmentation strategy. (a) The original signature image I, (b) a

3× 4 rigid segmentation grid and (c) the resulting image segmentation {Iij}.

3.3.2 Flexible grid segmentation

In this study, we propose a novel extension to the rigid grid segmentation strategy, referred
to as flexible grid segmentation, by introducing the concept of flexible grid cell boundaries.
After completing the rigid grid segmentation, as described in the previous section, each
grid cell boundary is dilated horizontally by a factor ̥x and vertically by a factor ̥y

of the original cell width or height, respectively. The dilation of any given grid cell
boundary is immediately halted, however, upon reaching the grid perimeter. These so-
called flexibility parameters may be interpreted as the proportion of adjacent rigid grid
cells incorporated into a flexible grid cell. Both ̥x and ̥y may be assigned arbitrary
values, although the constraints

0 ≤ ̥x ≤ N − 1, (3.1)

0 ≤ ̥y ≤M − 1 (3.2)

are imposed to ensure a legitimate M̥y ×N̥x flexible segmentation grid.
Constraint 3.1 enforces two equally important flexibility limits. Firstly, ̥x ≥ 0 en-

sures that no flexible grid cell may contract, which would result in a loss of signature
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shape information. Secondly, for all values of N > 1, the requirement ̥x ≤ N−1 ensures
that at least one flexible grid cell is strictly contained within the grid perimeter. If this
were not the case, each cell boundary could potentially coincide with the grid perime-
ter, resulting in needless data repetition. A similar argument follows for Constraint 3.2.
Furthermore, it should be clear that ̥x = ̥y = 0 represents the trivial case, as it is
equivalent to rigid grid segmentation.

Although imposing Constraints 3.1 and 3.2 produces a valid segmentation grid, ad-
ditional restrictions are required to ensure efficient feature extraction. Consider, for
example, the construction of a flexible segmentation grid for which ̥x → N − 1 and
̥y → M − 1. Although technically valid, the resulting signature image segmentation
would produce exceedingly similar sub-images, consequently leading to over-smoothing

of the feature set. For this reason, it is recommended that Constraints 3.1 and 3.2 be
modified to include

0 ≤ ̥x ≤ lx ≪ N − 1, (3.3)

0 ≤ ̥y ≤ ly ≪ M − 1, (3.4)

where lx and ly denote the maximum number of horizontally and vertically adjacent rigid
grid cells, respectively, reachable from any given flexible grid cell.

By allowing adjacent grid cells to overlap, the flexible grid segmentation scheme there-
fore not only possesses all the capabilities of rigid grid segmentation regarding signature
analysis, but also inherently provides additional information regarding signature progres-
sion on a global scale. The flexible grid segmentation strategy is illustrated in Figure
3.3.

3.4 Feature extraction

The utilisation of grid-based segmentation schemes enables the base classifiers developed
in this study to consider various local features. These features allow the analysis of
signature images on both stroke and sub-stroke level, thereby providing a robust platform
for signature representation.

A collection of diverse local features are considered in this study, namely pixel density,
gravity centre distance, orientation and predominant slant. The reader is reminded that
each of the MN signature sub-images, as generated during the segmentation process, is
represented by a binary m × n image matrix Iij . For the purposes of the discussions
presented in Sections 3.4.1–3.4.4, however, the simplified notation J is used to represent
an arbitrary signature sub-image. Furthermore, a pixel value of 1 is considered indicative
of a pen stroke coordinate, whilst zero-valued pixels denote the document background.

As shown in Sections 3.4.1–3.4.3, the discussion of these features is greatly simplified
by the incorporation of image moments, as proposed by Hu (1962). Image moments
generally represent a weighted average of image pixel intensities and have proven useful
for object description throughout the literature. The image moment Mpq, said to be of
order p+ q, is defined for an m× n image J as

Mpq(J) =

m
∑

i=1

n
∑

j=1

ipjqJ(i, j). (3.5)
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(a) (b)

(c)

Figure 3.3: The flexible grid segmentation strategy. (a) The original signature image I. (b) A

30.25×40.25 flexible grid, where the dotted lines indicate a 3×4 rigid grid, whilst the shaded areas

indicate the degree of overlap between adjacent grid cells. (c) The resulting image segmentation

{Iij}. Note that a portion of I is shared between each pair of adjacent grid cells. Also note

that each flexible grid cell is dynamically sized according to its proximity to the grid perimeter.

3.4.1 Pixel density

The pixel density feature xPD ∈ [0, 1] has been used to great effect in such works as
Justino et al. (2001) and Oliveira et al. (2005). Since the pixel density of a signature
segment is directly linked to stroke width, it is also commonly referred to as apparent

pen pressure. For this reason, the pixel density feature is said to contain pseudo-dynamic
signature information. The pixel density of an image J is obtained by computing the
ratio of pen stroke pixels to total image pixels, or

xPD(J) =
M00(J)

mn
. (3.6)
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3.4.2 Gravity centre distance

The gravity centre distance feature xGCD ∈ [0, 1], as described in Justino et al. (2005), is
obtained in two phases. Firstly, the coordinates of the image centroid (x̄, ȳ) are computed
using

x̄ =
M10(J)

M00(J)
, ȳ =

M01(J)

M00(J)
. (3.7)

Thereafter, the gravity centre distance associated with J , as illustrated in Figure 3.4, can
be computed as follows,

xGCD(J) =

√

x̄2 + ȳ2

√
m2 + n2

. (3.8)

m

n

√
m2 + n2

(x̄, ȳ)

p

x̄2 + ȳ2

Figure 3.4: Computation of the gravity centre distance feature.

3.4.3 Orientation

The orientation feature xORT ∈ [−90◦, 90◦) is defined as the angle φ between the horizontal
coordinate system axis and the major axis of the ellipse possessing the same second
moment as the image J .

Similar to pixel density, this feature is also said to contain pseudo-dynamic signature
information, as the orientation of a signature stroke segment may be linked to estimated

pen velocity1. This is of course greatly dependent on the grid resolution considered during
segmentation. For relatively low grid resolutions, each signature region considered may
contain multiple stroke segments, thereby nullifying the potential for pseudo-dynamic
signature analysis.

1Only the directional component of pen velocity may be inferred from the orientation of a pen stroke.
In order to estimate stroke speed, such features as progression, for example, may be used. The progression
feature is discussed further in Oliveira et al. (2005).
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Computation of the orientation feature is based on the method proposed by Haralick
and Shapiro (1992). Firstly, we compute the second moments Mxx, Myy and Mxy as

Mxx =
M20(J)

M00(J)
, Myy =

M02(J)

M00(J)
, Mxy = M11(J). (3.9)

The orientation feature, as illustrated in Figure 3.5, is subsequently computed as

xORT(J) = arctan





Myy −Mxx +
√

(Myy −Mxx)2 + 4M2
xy

2Mxy



 . (3.10)

x

y

φ

Figure 3.5: Computation of the orientation feature. Indicated with dotted lines alongside the

segmented image region is the ellipse possessing the same second moments, as well as its major

axis. The angle φ denotes the resulting orientation feature value.

3.4.4 Predominant slant

In order to compute the predominant slant feature xPS ∈ {1, 2, . . . , S}, where S denotes
the number of user-defined slant elements considered, the two-stage method proposed by
Justino et al. (2000) is implemented. Firstly, the image skeleton Js is extracted from J ,
as illustrated in Figure 3.6, using the skeletonisation algorithm discussed in Gonzalez and
Woods (2002). Subsequently, Js is traversed with each of the S individual 8-neighboured
slant elements. The base classifiers developed in this study consider 4 such elements,
defined as

1 :





0 0 0
1 1 1
0 0 0



 , 2 :





1 0 0
0 1 0
0 0 1



 , 3 :





0 1 0
0 1 0
0 1 0



 , 4 :





0 0 1
0 1 0
1 0 0



 .
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Figure 3.6: Computation of the predominant slant feature. The image skeleton clearly exposes

numerous straight line segments to be identified by the set of slant elements, consequently

producing the predominant slant feature value.

An occurrence record of each slant element is kept by means of a symbol counter ni,
where i = 1, 2, . . . , S denotes the symbol number. Subsequently, the symbol that occurs
most frequently is selected to represent predominant slant, or

xPS(J) = argmax
i=1,2,...,S

[ni]. (3.11)

3.4.5 Feature vector construction

As mentioned in Section 1.2.1, each signature pattern X is represented by a set of T ,
d-dimensional feature vectors {x1,x2, . . . ,xT}. Sections 3.3.1 and 3.3.2 propose two seg-
mentation strategies for dividing a signature image into a set of sub-images, whilst Sec-
tions 3.4.1–3.4.4 discuss several methods for obtaining a scalar-valued feature from any
given sub-image.

In this section, these concepts are combined in order to construct a set of intelligent,
robust feature vectors, thereby completing the feature extraction process. Given a signa-
ture image I, we first perform grid-based segmentation, yielding a set of MN signature
sub-images {Iij}. By extracting a single feature xf (Iij), where f ∈ {PD, GCD, ORT,
PS}, from each of these sub-images, I is subsequently encoded as

X =











xf(I11) xf(I12) . . . xf (I1N)
xf(I21) xf(I22) . . . xf (I2N)

...
...

. . .
...

xf (IM1) xf (IM2) . . . xf (IMN)











. (3.12)

As illustrated in Figures 3.2 and 3.3, it is quite possible that a grid-based segmentation
scheme may occasionally result in signature sub-images that contain no pen stroke pixels
at all. In such cases, we let xf (Iij) = 0, regardless of the feature being represented.
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Subsequently, each column2 of X is chosen to represent a feature vector xi, thereby
yielding a set of N , M-dimensional feature vectors

X = {x1,x2, . . . ,xN}. (3.13)

As mentioned in Section 3.3.1, the use of a grid-based segmentation strategy ensures
translation invariant feature vectors. Furthermore, any fixed-resolution segmentation grid
automatically adapts its grid cell size according to the signature image dimensions. This
property, used in conjunction with the scale invariant local features discussed in Sections
3.4.1–3.4.4, therefore also ensures a scale invariant feature vector representation.

3.5 Vector quantisation

As discussed in the previous section, each signature is represented by a set of T feature
vectors in ℜd. The HMM base classifiers developed in this study, however, are designed
specifically for discrete observation sequences. For this reason, the efforts of a vector
quantiser are required.

3.5.1 Overview

A vector quantiser Q is formally defined as a mapping from a d-dimensional vector space
ℜd onto a finite set of K distinct codewords or symbols V = {v1, v2, . . . , vK}, or

Q : ℜd 7→ V. (3.14)

The set V is generally referred to as a K-level codebook or symbol alphabet.
The VQ process is associated with a partitioning of the vector space ℜd into K regions

R = {R1, R2, . . . , RK}, such that each region Rk contains those vectors x ∈ ℜd which are
mapped by Q to the codeword vk, or

Rk = Q−1(vk), (3.15)

where
K
⋃

k=1

Rk = ℜd. (3.16)

In practice, the VQ process is analogous to pattern classification by means of an SDC,
where each codeword region Rk denotes a pattern class. When using SDCs, each pattern
class is typically represented by a d-dimensional Gaussian PDF

f(x|Rk) =
1

(2π)
d
2

√

|Σi|
e−

1

2
(x−µi)Σ

−1

i (x−µi). (3.17)

Each region Rk is therefore completely specified by its associated mean vector µk and
covariance matrix Σk, which may be estimated from a set of sample patterns as

µk =
1

Nk

Nk
∑

i=1

xi, (3.18)

2Feature vectors are constructed from the feature matrix columns specifically, due to the natural
progression of Western handwriting from left to right.
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Σk =
1

Nk − 1

Nk
∑

i=1

(µk − xi)(µk − xi)
T , (3.19)

where xi ∈ Rk and Nk denotes the number of sample patterns assigned to Rk.
Furthermore, as each codeword is a mapping of vectors in the feature space to a

compacted representation, each encoding operation results in a quantisation error

ǫk(x|vk) = D(x, f(x|Rk)). (3.20)

This error, commonly referred to as the distortion, may be calculated using any suitable
distance measure, and is used to gauge the representative ability of codeword vk. It is
therefore the primary objective of any quantiser to minimise the overall distortion, defined
as

∑K

k=1 ǫk(x|vk). This is achieved by the iterative re-assignment of sample patterns and
subsequent recalculation of the regions Rk, until the overall distortion converges to a local
minimum.

3.5.2 Implementation

Each HMM base classifier Ci developed in this study is associated with a unique quantiser
Q. Each corresponding codebook V is generated by means of the well-known K-means

clustering algorithm, as discussed in Bishop (2006). Although trials conducted by Alpay-
din (1998) suggest that the EM inference algorithm for Gaussian mixtures outperforms
any of its known peers, K-means clustering remains, in the context of signature verifi-
cation, the most popular VQ algorithm found in the literature. This is most likely due
to two main performance criteria. Firstly, the K-means algorithm generates sufficiently
accurate3 codebooks, without being computationally exhaustive. Secondly, this method
circumvents the infamous curse of dimensionality, where either the size or nature of the
codebook training data may lead to unreliable, or even singular, codeword covariance
matrices.

Since each codeword vk in this study is specified using its mean vector only, Q is
referred to as a hard quantiser. Any unknown vector xq submitted for encoding is subse-
quently associated with the codeword region having the nearest centroid. Furthermore,
the distortion measure associated with vk is consequently based on a Euclidean distance
measure

ǫk(x|vk) = DEucl(xq, f(x|Rk))

=
√

(xq − µk)T (xq − µk). (3.21)

Even though the K-means algorithm is both simple and reliable, certain measures
are taken in this study, in order to ensure maximal efficiency. As mentioned in the
previous section, a codebook V contains exactly K codewords. It is possible, however,
for sufficiently large values ofK, that certain regions are not assigned any sample patterns
during codeword reestimation. An empty region Rn can therefore also have no associated
mean µn, resulting in a null codeword.

3The accuracy of a VQ codebook V is measured on the basis of overall distortion, as discussed in the
previous section.
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In order to address this issue, the method proposed by Tanguay (1993) is employed.
Consequently, K does not necessarily denote the size of a K-level codebook, but rather
its upper bound. If, during training, a null codeword vn is encountered, it is simply
removed from the codebook. Furthermore, n is added to the set K∅, containing all null
codeword indices. The partition

K
⋃

k=1
k 6∈K∅

Rk = ℜd (3.22)

remains complete, as the subspace of ℜd previously occupied by Rn = ∅ is simply assim-
ilated by its neighbouring regions.

3.6 Concluding remarks

In this chapter we explained how the set of base classifiers developed in this study make
use of several image processing and data processing techniques, in order to convert a raw
signature image into a suitable feature vector representation.

Traditionally, when developing a single signature verification system, one would con-
struct feature vectors comprised of several independent feature types, thereby ensuring
greater separation of patterns in the feature space. As one of the primary objectives
of this study is the combination of a classifier ensemble, however, each base classifier is
associated with a single feature type.

In the next chapter, we introduce the classification models considered in this study,
namely DTW and HMMs, and explain how each is used to model a writer’s signature
based on the feature vector representation yielded by the algorithms discussed in this
chapter.



Chapter 4

Signature Modelling and Verification

“The oldest, shortest words - ‘yes’ and ‘no’ - are those which require the most thought.”
- Pythagoras (582BC–497BC)

4.1 Introduction

In the previous chapter we discussed how a raw signature image is converted into a
robust feature vector representation, considering various grid-based techniques, thereby
completing the feature extraction phase. In this chapter we explain how these feature-
based signature representations may be used to construct writer-dependent models used
for signature verification, thereby completing the classification phase, as well as the un-
derlying pattern recognition process, as discussed in Section 1.2.1.

Section 4.2 introduces several key concepts regarding the writer-dependent approach
to signature verification. Sections 4.3 and 4.4 focus on the base classifiers developed in
this study and show that they employ two fundamentally different classification tech-
niques. The first classifier, a template matching technique based on DTW, is presented
in Section 4.3. We explain the advantages of using the DTW-based approach to vector
matching as an alternative to other popular distance measures. The second classifier, a
discrete observation left-right HMM, is presented in Section 4.4. We explain the general
advantages of utilising an HMM-based approach to signature modelling, as well as the
reasoning behind the specific HMM design considered in this study.

Note that Sections 4.3 and 4.4 provide condensed discussions of the classification
techniques used for signature modelling and verification. Detailed discussions of the
theoretical background required for DTW and HMM development are reserved for Ap-
pendices A and B, respectively. Although the topics discussed in these appendices are of
vital importance to the successful implementation of the DTW and HMM base classifiers,
they are not deemed central within the context of this chapter.

4.2 Overview

In this section we introduce several key aspects generally associated with signature mod-
elling and verification. For details regarding the specific protocols considered by the DTW
and HMM base classifiers developed in this study, see Sections 4.3 and 4.4, respectively.

38
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4.2.1 Modelling

The act of signature creation is a dynamic, time-varying process, since it is physically
impossible for any writer to exactly duplicate a signature in successive attempts. Certain
variations therefore become evident in the feature sets of different genuine signatures
belonging to a single writer. This phenomenon is commonly referred to as intra-class

variability. Consequently, it becomes essential for any efficient verification system to
sufficiently understand and compensate for such variations.

In general, given a set of training signatures, the construction of a writer-dependent
signature model is based on a certain predefined reference entity. In this study, for exam-
ple, the reference entities used by the DTW and HMM base classifiers are represented by
a signature pattern Xk (see Section 4.3.2) and hidden Markov model λ (see Section 4.4.4),
respectively. Following possible model optimisation, any signature pattern subsequently
submitted for verification is matched against such a reference entity, thereby yielding an
appropriate classifier score.

In order to compensate for the intra-class variability associated with writer ω, cer-
tain writer-specific statistics are also included in the signature model. The most popular
statistics are undoubtedly µω and σω, denoting the mean and standard deviation, re-
spectively, of the classifier scores obtained from the training set of writer ω. Whilst µω

represents a benchmark for the classifier score obtained from a typical genuine signa-
ture belonging to writer ω, the measure of tolerable score variability obtained from the
training set is quantified by σω.

These statistics are therefore also said to estimate the confidence distribution1 of
genuine signatures belonging to writer ω, as illustrated in Figure 4.1. In an ideal scenario,
this estimated distribution would include any and all genuine signatures produced by
writer ω, whilst excluding all forgeries. As shown in the next section, however, this is
generally not a valid assumption.

4.2.2 Verification

The presence of intra-class variability, as discussed in the previous section, generally
prohibits a verification system from producing a definitive decision as to the origin of
a questioned signature. A more realistic approach involves associating a probabilistic
measure of confidence to the validity of a questioned signature’s claim of ownership. A
confidence of 1 is associated with a perfect match, whilst a confidence of 0 is associated
with a complete mismatch.

During the verification process, given a questioned signature pattern X and claim of
ownership ω, each base classifier first computes an appropriate measure of dissimilarity,
denoted by δ ∈ [0,∞), between X and the trained model for writer ω. Subsequently, in
order to employ a global decision threshold τ , it is required that δ undergoes score nor-

malisation. This process compensates for writer-specific variability, consequently yielding
the confidence score sc ∈ [0, 1].

1Although the confidence distributions of genuine and forged signatures do not typically fall into a
well-identifiable class, the idealisation of representing each as a Gaussian distribution is commonly used
throughout the literature.
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Although the process of score normalisation may seem relatively simple, the selection
of an appropriate normalisation method is definitely not a trivial endeavour, as shown in
Jain et al. (2005). The base classifiers developed in this study perform score normalisation
by means of the monotonically decreasing function

sc = N(δ, µω, σω)

=
1

1 + e
6( δ

µω+σω
−1)

, (4.1)

where µω and σω denote the writer-specific statistics obtained during model training.
Equation 4.1, an adaptation of the well-known logistic function, is in many aspects com-
parable to the double-sigmoid2 normalisation function proposed by Cappelli et al. (2000).
Note that Equation 4.1 is specifically designed to convert a dissimilarity measure into a
confidence score, although it may easily be adapted to perform normalisation of a simi-
larity measure.

Subsequently, if sc ≥ τ , X is classified as belonging to G (the positive class). Oth-
erwise, X is classified as belonging to F (the negative class). Based on the probabilistic
definition of sc, it could logically follow that the discrete decision threshold τ = 0.5
would generally provide the most accurate classification of a questioned signature. This
is, however, hardly ever the case, since G and F rarely occupy clearly separable confidence
distributions, as illustrated in Figure 4.1.

The probable overlapping of G and F gives rise to two important subsets. Firstly,
we define GF ⊂ G as the set of genuine signatures misclassified as forgeries. Similarly,
FG ⊂ F is defined as the set of forgeries misclassified as genuine. Ultimately, we are
interested in the optimal verification threshold τ ∗, which minimises the area occupied by
GF ∪ FG.

4.3 Dynamic time warping

4.3.1 Overview

When utilising a template matching technique, a questioned feature set is matched to a
feature set representative of the claimed pattern class, in order to obtain a measure of
dissimilarity. The feature vectors contained within these sets are commonly referred to
as test vectors xq and reference vectors xk, respectively.

The simplest method for matching two vectors is to calculate the Euclidean distance
between them, that is

DEucl(xq,xk) =
√

(xk − xq)T (xk − xq). (4.2)

From Equation 4.2 it is clear that a Euclidean distance measure is based on the differences
between the corresponding elements of the test and reference vectors.

2In order to implement the piecewise-defined double-sigmoid normalisation function, statistical knowl-
edge of both the genuine signature and forgery distributions is required. This approach is therefore not
suitable for the writer-dependant models considered in this study.
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Figure 4.1: Hypothetical Gaussian confidence distributions for genuine signatures (G) and

forgeries (F ), as well as their respective misclassification subsets GF and FG. Also indicated is

the optimal verification threshold τ∗ such that GF ∪ FG is minimised.

This approach, however, is not always desirable, since subtle variations in the compo-
sition of the signatures may result in certain features not representing the same signature
segments. This likelihood increases dramatically as higher grid resolutions are employed
during the feature extraction phase.

For this reason, the DTW-algorithm has long been the preferred candidate for use
in pattern recognition systems based on template matching. This is due to the fact
that the DTW-algorithm, as illustrated in Figure 4.2, is able to non-linearly align two
feature vectors, prior to calculating the Euclidean distance between these aligned vec-
tors. This is achieved by employing techniques based on dynamic programming. The
obtained DTW-based vector distance, whilst still based on the Euclidean distance mea-
sure, consequently matches the vector elements based on similarity rather than location.
This approach to vector matching therefore greatly improves the overall stability of the
associated verification system.

The DTW-algorithm, as implemented in this study, is discussed in more detail in
Appendix A. For a comprehensive discussion on the theory of DTW and the applications
thereof, the reader is referred to Coetzer (2005).

4.3.2 Model training

In order to construct an adequately representative writer-dependent model, each writer
ω submits a set of Kω genuine signatures, represented by

{X(ω)
1 ,X

(ω)
2 , . . . ,X

(ω)
Kω
}, (4.3)
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Figure 4.2: Illustration of the feature vector alignment process utilised by DTW. The algo-

rithm identifies similar features contained within the test and reference vectors. The resulting

dissimilarity measure is based on the optimal path obtained between these vectors, as opposed

to simply matching corresponding components. For the DTW base classifiers developed in this

study, feature vectors extracted from the test and reference patterns have the same dimension

d. The internal parameter Hvec, referred to as the bandwidth, is used to regulate the algorithm’s

flexibility, and is discussed in Section A.1.

for training. The first step entails selecting the reference signature X
(ω)
k , which subse-

quently acts as a template for signatures belonging to writer ω. In this study, we define
X

(ω)
k as the most representative signature found in the training set. In order to deter-

mine this most representative signature, each training pattern X
(ω)
i is matched to every

other pattern X
(ω)
j 6=i in the training set, after which the signature that yields the smallest

average dissimilarity to the other training signatures is deemed the most representative.
Signatures are matched on the basis of the DTW-based distance between them, denoted
by D(X

(ω)
i ,X

(ω)
j ), as discussed in Section A.1.

In addition, the writer-specific statistics µω and σω are also determined by matching
the identified reference signature to every other training signature. These statistics are
computed as

µω =
1

Kω − 1

Kω
∑

i=1

i6=k

D(X
(ω)
i ,X

(ω)
k ), (4.4)
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σω =
1

Kω − 2

Kω
∑

i=1

i6=k

(D(X
(ω)
i ,X

(ω)
k )− µω)2. (4.5)

The writer-specific statistics, in conjunction with the reference signature, comprise the
writer model, denoted by

Mω = (X
(ω)
k , µω, σω). (4.6)

This training process is performed for each of the Ω writers enrolled into the system
database, yielding

{M1,M2, . . . ,MΩ}, (4.7)

thereby completing the DTW-based model training phase.

4.3.3 Verification

When a DTW base classifier receives a questioned signature pattern Xq and claim of
ownership ω, it first needs to obtain the dissimilarity measure δ by matching Xq to the
trained model Mω. As discussed in the previous section, this is achieved by computing

δ = D(Xq,X
(ω)
k ). (4.8)

In order to map δ ∈ [0,∞) to the confidence interval [0, 1], Equation 4.1 is applied,
yielding

sc = N(δ, µω, σω). (4.9)

Finally, a sliding global threshold τ ∈ [0, 1] is used to obtain a verification decision D,
such that

D =

{

1, if sc ≥ τ

0, if sc < τ
. (4.10)

The signature pattern Xq is accepted as genuine if and only if D = 1.

4.4 Hidden Markov models

4.4.1 Overview

In the previous section we discussed how a DTW base classifier models a writer’s signature
by computing the average distance between feature sets representative of a typical genuine
signature and those of a questioned signature. In such a model, the order in which these
feature vectors appear within the feature set is not considered.

HMMs adopt an alternative, stochastic approach by considering not only the feature
vectors, but also the relationships between consecutive feature vectors in the feature set.
In order to sensibly employ HMMs, it is therefore required that time-evolution exists
between each pair of consecutive feature vectors. This concept of signature evolution is
simulated by the grid-based feature vector construction process, as discussed in Section
3.4.5.

This section provides concise discussions regarding the HMM base classifiers developed
in this study. An elaboration of key HMM concepts relevant to this study is provided in
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Appendix B. Furthermore, for comprehensive discussions on the theory of HMMs and
the applications thereof, the reader is referred to such works as Deller et al. (1987) and
Rabiner (1989).

4.4.2 Notation

Given a sequence of discrete observations O = {o1, o2, . . . , oT}, the discrete observation
HMM λ is characterised by the following key elements:

• N , the number of states in the model. The individual states are denoted by

S = {s1, s2, . . . , sN}, (4.11)

whilst the state at time t is denoted by qt.

• M , the number of distinct observation symbols. The individual symbols are denoted
by

V = {v1, v2, . . . , vM}. (4.12)

As the set of observation symbols corresponds to the output of the system being
modelled, it is strictly required that oi ∈ V for i = 1, 2, . . . , T .

• The state transition probability distribution A = {aij}, where

aij = P (qt+1 = sj |qt = si), 1 ≤ i, j ≤ N. (4.13)

As each element of A represents a probability, the additional constraint

N
∑

j=1

aij = 1, 1 ≤ i ≤ N (4.14)

is imposed.

• The observation symbol probability distribution for state j, B = {bj(k)}, where

bj(k) = P (ot = vk|qt = sj),
1 ≤ j ≤ N

1 ≤ k ≤M
. (4.15)

• The initial state distribution π = {πi}, where

πi = P (q1 = si), 1 ≤ i ≤ N. (4.16)

Similar to the state transition probability distribution, it is required that

N
∑

i=1

πi = 1. (4.17)

Since the model parameters N and M can be inferred from B, the compact notation

λ = (A,B, π) (4.18)

is commonly used to specify the complete parameter set for a discrete observation HMM.
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4.4.3 HMM topology

If, apart from having to adhere to the rules of probability, no additional constraints are
imposed on the model parameters π and A, the HMM is referred to as fully connected

or ergodic. Such an HMM has the property that every state can at any time be reached
from every other state.

By imposing additional constraints on π and A, however, it is possible to customise
the HMM in order to better suit the nature of the data considered. Such a customised
HMM is said to have a specific topology, as illustrated in Figure 4.3.

s1 s2

s3s4

a11

a12

a13a14

(a)

s1 s2

s3s4

a11

a12

(b)

s1 s2 s3 s4

a11

a12

a13

(c)

Figure 4.3: Examples of popular HMM topologies for N = 4. (a)-(b) Ergodic and ring-struc-

tured HMMs, respectively. (c) A left-right HMM with l = 2 forward links per state. Note that

only the left-right model has a designated initial state.

One such topology, referred to as the left-right model (see Figure 4.3 (c)), has proved
highly effective in applications where the modelling of handwriting or speech is involved.
Since its underlying state sequence has the property that the state index remains non-
decreasing, the left-right HMM model is especially well suited to model signals that evolve
with time in one direction only. For this reason, left-right HMMs are commonly used to
great effect for signature verification and recognition. The HMM base classifiers developed
in this study each utilises a left-right HMM, mainly due to the fact that the writer-specific
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signatures contained in Dolfing’s data set (see Section 6.2) possess a similar baseline
alignment. As a result, signature alignment in actual fact becomes a distinguishing
feature. We therefore explicitly avoid rotation invariance, since its incorporation would
only impede system performance.

From a mathematical perspective, a left-right HMM can be constructed by imposing
two additional constraints on π and A. Firstly, it is required that

πi =

{

1, if i = 1

0, if i 6= 1
, (4.19)

since the state sequence must begin in state s1 (and end in state sN). Furthermore, the
constraint

aij = 0, j < i (4.20)

ensures that state indices remain non-decreasing. Often, in order to prevent radical
changes in the state index, an additional constraint is imposed on A, that is

aij = 0, j > i+ l, (4.21)

where l denotes the maximum number of (consecutive) states reachable from state si.
This implies that, during any given state transition, up to l − 1 states may be skipped.

4.4.4 Model training

As was the case for the DTW-based model, each writer submits a set of Kω genuine
signatures for training, represented by

{X(ω)
1 ,X

(ω)
2 , . . . ,X

(ω)
Kω
}. (4.22)

Before these patterns can be submitted to a discrete HMM, however, each set of feature
vectors needs to be converted into a set of discrete observations. This is achieved by
performing an appropriate VQ technique, as discussed in Section 3.5, yielding

{O(ω)
1 ,O

(ω)
2 , . . . ,O

(ω)
Kω
}. (4.23)

The HMM parameter set is subsequently optimised using Viterbi re-estimation (see Sec-
tion B.3), where the dissimilarity between an observation O and model λ is given by

D(O, λ) = − lnP (O|λ). (4.24)

In addition, the writer-specific statistics µω and σω are determined from the training set
by computing

µω =
1

Kω

Kω
∑

i=1

D(O
(ω)
i , λω), (4.25)

σω =
1

Kω − 1

Kω
∑

i=1

(D(O
(ω)
i , λω)− µω)2. (4.26)
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The writer-specific statistics, in conjunction with the trained HMM, represent the writer-
dependent model, denoted by

Mω = (λω, µω, σω). (4.27)

This training process is performed for each of the Ω writers enrolled into the system
database, yielding

{M1,M2, . . . ,MΩ}, (4.28)

thereby completing the HMM-based training phase.

4.4.5 Verification

When an HMM base classifier receives a questioned signature pattern Xq and claim of
ownership ω, it first needs to convert each of the T , d-dimensional feature vectors into
a discrete symbol represented in the VQ codebook (see Section 3.5.1). This VQ process
consequently produces the discrete observation sequence Oq, which can be matched to
the trained model Mω by means of the Viterbi algorithm (see Section B.2). The resulting
dissimilarity measure

δ = D(Oq, λω) (4.29)

is subsequently mapped to the confidence interval [0, 1] by applying Equation 4.1, yielding

sc = N(δ, µω, σω). (4.30)

Finally, a sliding global threshold τ ∈ [0, 1] is used to obtain a verification decision D,
such that

D =

{

1, if sc ≥ τ

0, if sc < τ
. (4.31)

The signature pattern Xq is accepted as genuine if and only if D = 1.

4.5 Concluding remarks

In this chapter we introduced the DTW and HMM classification techniques utilised by
the base classifiers developed in this study. We showed that each technique employs a
fundamentally different approach to signature modelling. We also showed that, concep-
tually, the verification protocols associated with these models are identical. Although not
proven in this study, it is known that an HMM-based approach to signature verification
is generally superior to a DTW-based approach in terms of computational efficiency.

By employing different feature extraction techniques, as discussed in the previous
chapter, in conjunction with different classification techniques, as discussed in this chap-
ter, we obtain a set of fundamentally different base classifiers. Each of these base classi-
fiers can constitute a signature verification system in its own right, as shown in Chapter
6 - where Dolfing’s data set will be used to gauge the performance of each of the base
classifiers separately.

The combined classifiers developed in this study, however, harness the efforts of several
base classifiers, by employing a suitable classifier fusion strategy. A collection of such
classifier fusion strategies is presented in the next chapter.



Chapter 5

Classifier Combination

“The whole is more than the sum of its parts.”
- Aristotle (384BC–322BC)

5.1 Introduction

The base classifiers, as discussed in Chapters 3 and 4, each combine the efforts of a single
feature extraction technique with a single classification technique, in order to construct a
signature model. As these classifiers are fundamentally different from each other, either
on the basis of feature type or classification technique, one would expect to observe a gain
in verification proficiency when combining the efforts of the resulting classifier ensemble.

In this chapter we discuss several techniques available for base classifier combination,
based on either their associated confidence scores or verification decisions. Score-based
fusion is briefly discussed in Section 5.2, whilst a discussion on decision-based fusion
strategies is presented in Section 5.3. Most importantly, in Section 5.3.2 we discuss a
classifier combination strategy based on ROC-curve analysis, wherein we also present
the novel elitist MAROC-based classifier ensemble combination strategy proposed in this
study.

5.2 Score-based fusion

Given a set of N confidence scores {s1, s2, . . . , sN} from N base classifiers, the combined

score s∗ can be calculated by utilising any number of score fusion techniques - the most
popular of which include score maximisation, minimisation and averaging. The final
decision D is subsequently obtained by imposing a decision threshold on s∗.

By employing score maximisation, for example, the combined classifier minimises only
the FRR. Score minimisation, on the other hand, minimises only the FAR. As mentioned
in Section 1.2.8, though, any decrease in the FRR inevitably results in an increased FAR,
and vice versa. When employing either of these score fusion strategies, the appropriate
strategy is dictated by the penalty1 associated with a false acceptance or false rejection.

1In the context of cheque processing, for example, a much higher penalty is generally associated with
a false acceptance than with a false rejection. When considering especially large cheques, the clearance
of a forged cheque is deemed unacceptable.

48
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In order to achieve an overall improvement in classifier performance, the score aver-
aging fusion strategy focusses on the minimisation of the AER. When employing SA, the
combined score is calculated as

s∗ =
1

N

N
∑

i=1

si. (5.1)

Although the impact on system performance is generally less dramatic when employ-
ing SA, a consistent improvement in verification accuracy can be expected. Since each
base classifier influences the final decision, though, one should be mindful not to include
any relatively inaccurate base classifiers, thereby diminishing the overall improvement in
performance.

5.3 Decision-based fusion

Another popular approach to classifier ensemble combination involves obtaining a verifi-
cation decision from each base classifier individually, after which a suitable decision fusion
strategy is applied. In such cases, the decision made by each base classifier involved in
the combination process is referred to as a partial decision, denoted by P ∈ {0, 1}, where
P = 1 is associated with an acceptance, whilst P = 0 indicates a rejection.

5.3.1 Voting

Given a set of N partial decisions {P1, P2, . . . , PN} from N base classifiers, a voting
strategy may be applied in order to obtain the final decision D, by computing

D =

{

1, if
∑N

i=1 Pi ≥ k

0, if
∑N

i=1 Pi < k
. (5.2)

From Equation 5.2 it is clear that k represents the number of votes required to obtain a
positive result. Although k ∈ [1, N ] can be chosen arbitrarily, one should bear in mind
that the combined classifier’s tendency to accept a questioned signature, and therefore
also the corresponding FAR, is inversely proportional to k.

In general, the majority vote rule is employed, where the optimal number of votes
required is defined as

k =

⌈

N + 1

2

⌉

, (5.3)

where ⌈·⌉ denotes the ceiling operator. As is the case with SA, the inclusion of a rela-
tively inaccurate base classifier may also impede the overall performance of the combined
classifier when the MV rule is employed, but to a much lesser extent.

5.3.2 ROC-based combination

In this section we present the classifier combination strategy, originally proposed by
Haker et al. (2005), which is based on the maximum likelihood analysis of ROC-curves.
We explain how this method, henceforth referred to as Haker’s algorithm, can be used
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to combine any pair of continuous classifiers. We also discuss how Haker’s algorithm
can be incorporated into the design of the novel classifier ensemble combination strategy
proposed in this study.

Haker’s algorithm is geared towards the optimal combination of decisions made by two
discrete classifiers CA and CB. The algorithm assumes that the individual performances
of CA and CB have already been experimentally determined and recorded as points in
ROC-space. In essence, Haker’s algorithm combines the decisions made by CA and CB

using one of four different combination rules:

• SA, where the combined decision is represented by the decision made by CA.

• SB, where the combined decision is represented by the decision made by CB.

• SA&B, where the popular AND rule is employed to combine the decisions made by
CA and CB. Under the AND rule, a questioned signature is accepted if and only if
both classifiers accept it individually.

• SA|B, where the popular OR rule is employed to combine the decisions made by CA

and CB. Under the OR rule, a questioned signature is accepted if at least one of
the two classifiers accepts it individually.

Given a classifier pair, the appropriate combination rule is determined using maximum
likelihood estimation (MLE), based on the performance statistics of said classifiers in
ROC-space.

It is important to note that Haker’s algorithm has been shown to outperform strategies
which employ only one of the combination rules presented above, regardless of the ROC-
statistics of the individual classifiers. In the next section, we discuss Haker’s algorithm
in more detail.

Haker’s algorithm

Recall from Section 1.2.8 that, for a continuous classifier Ci, each point (f+
i (τ), t+i (τ)) in

ROC-space denotes the FPR-TPR pair associated with a specific decision threshold τ ,
thereby representing the discrete classifier Ci(τ).

The ROC-space combination strategy utilised by Haker’s algorithm involves using
maximum likelihood analysis to obtain a combination rule for two ROC operating points
(f+

A (τA), t+A(τA)) and (f+
B (τB), t+B(τB)). Given a questioned pattern, each of the corre-

sponding classifiers produces either a positive or negative output, resulting in four pos-
sible cases. For each of these cases, Table 5.1 expresses the MLE of the unknown truth
T ∈ {0, 1}, where T = 1 is associated with a genuine signature, whilst T = 0 indicates a
forgery.

Each inequality in the rightmost column of Table 5.1 represents a logical expression
and therefore evaluates to a single binary output - the MLE for T . For example, assuming
conditional independence, it follows that

P (CA = 1, CB = 1|T = 1) = P (CA = 1|T = 1)P (CB = 1|T = 1)

= t+At
+
B. (5.4)
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CA CB Combination MLE for truth T
1 1 P (CA = 1, CB = 1|T = 1) ≥ P (CA = 1, CB = 1|T = 0)
1 0 P (CA = 1, CB = 0|T = 1) ≥ P (CA = 1, CB = 0|T = 0)
0 1 P (CA = 0, CB = 1|T = 1) ≥ P (CA = 0, CB = 1|T = 0)
0 0 P (CA = 0, CB = 0|T = 1) ≥ P (CA = 0, CB = 0|T = 0)

Table 5.1: Maximum likelihood combination of the binary output of classifiers CA and CB .

CA CB Combination MLE for truth T
1 1 t+At

+
B ≥ f+

A f
+
B

1 0 t+A(1− t+B) ≥ f+
A (1− f+

B )
0 1 (1− t+A)t+B ≥ (1− f+

A )f+
B

0 0 (1− t+A)(1− t+B) ≥ (1− f+
A )(1− f+

B )

Table 5.2: Maximum likelihood combination, in terms of the associated TPR and FPR, of the

binary output of classifiers CA and CB .

Following a similar argument for the remaining inequalities, the entries in Table 5.2 are
obtained.

From the definition of the TPR and FPR, it should be clear that, for any classifier
Ci, whenever the TPR t+i is less than the corresponding FPR f+

i , a simple negation of
the classifier decision will result in (f+

i , t
+
i ) being reflected about the line TPR=FPR in

ROC-space. The assumption t+i ≥ f+
i is therefore reasonable, from which it follows that

t+At
+
B ≥ f+

A f
+
B and (1−t+A)(1−t+B) ≤ (1−f+

A )(1−f+
B ). Consequently, whenever CA and CB

are in agreement, their common output denotes the MLE estimate of T . Therefore, only
the two middle rows of Table 5.2 need to be determined, which results in four possible
MLE combination schemes. These combination schemes are provided in Table 5.3.

Furthermore, Table 5.4 shows how the predicted TPR and FPR associated with each
combination scheme is obtained. These predicted combined performances are based on
the assumption that the base classifiers make independent decisions. In practise, however,
this is rarely the case. The signature modelling strategies employed by the DTW and
HMM base classifiers developed in this study, for example, although considering com-
pletely different approaches, are both derived from dynamic programming techniques. It
is therefore suspected that the combination of these base classifiers may not facilitate the
optimal performance of a ROC-based combined classifier.

In order to address this issue, the base classifiers developed in this study, when deter-
mining the optimal combination of each discrete classifier pair, do not rely on a predicted
performance. Instead, the appropriate combination rule, as determined from the discrete
classifiers’ ROC-statistics, is employed on actual data, thereby producing the realistically
attainable performance of such a discrete classifier combination. Although the genera-
tion of this estimated performance is computationally far more expensive than that of
the predicted performance, the potentially significant impact of the independence crite-
rion is minimised. Nevertheless, the predicted performance may still be used in order
to determine an upper bound for the expected performance. Should the base classifiers
prove to be sufficiently independent, this upper bound remains realistically achievable.

The pseudo-code for Haker’s algorithm is provided in Appendix C. When utilising this
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CA CB SA&B SA SB SA|B
1 1 1 1 1 1
1 0 0 1 0 1
0 1 0 0 1 1
0 0 0 0 0 0

Table 5.3: Combination rules considered for the output of classifiers CA and CB .

Scheme TPR FPR
SA&B t+At

+
B f+

A f
+
B

SA t+A f+
A

SB t+B f+
B

SA|B t+A + t+B − t+At+B f+
A + f+

B − f+
A f

+
B

Table 5.4: Calculation of the predicted combined TPR and FPR associated with the set of

MLE combination rules.

algorithm to combine a pair of continuous classifiers CA and CB, each of the J threshold-
specific classifiers contained in CA is combined with each of the K threshold-specific
classifiers contained in CB, using combination rule SA, SB, SA&B, or SA|B. This process
consequently yields JK additional points in ROC-space. These additional ROC-points,
however, each represents two decision thresholds τA and τB coupled with the appropriate
MLE combination rule. In order to reproduce the predicted/estimated performance of
such a discrete classifier combination in practise, the combined classifier employs a set
of modified decision rules, presented in Table 5.5. The decision rules associated with
schemes SA and SB are identical to those employed by a single classifier (see Sections
4.3.3 and 4.4.5). The decision rule associated with scheme SA&B evaluates to D = 1 if
and only if sA ≥ τA AND sB ≥ τB, whilst the decision rule associated with scheme SA|B
evaluates to D = 1 if sA ≥ τA OR sB ≥ τB.

Scheme Decision rule
SA&B min[sA − τA, sB − τB] ≥ 0
SA sA ≥ τA
SB sB ≥ τB
SA|B max[sA − τA, sB − τB] ≥ 0

Table 5.5: Decision rules considered by the combined classifier, given the base classifier scores

sA and sB.

Furthermore, since the goal of classifier combination is the construction of a superior
hybrid classifier, a single ROC-curve is selected from the pool of JK discrete classifier
combinations. From the definition of the TPR and FPR, it should be clear that the
optimal ROC-curve obtainable from such a pool of classifiers is represented by the upper-
left boundary of the convex hull of these JK points in ROC-space. This MAROC-curve,
as illustrated in Figure 5.1, therefore contains no sub-optimal discrete base classifiers
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or sub-optimal combined classifiers, and is representative of the combined classifier’s
maximum attainable performance.
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Figure 5.1: Example of a typical MAROC-curve associated with continuous classifiers CA

and CB , comprised of J ≈ 1200 and K ≈ 1200 discrete classifiers, respectively. Note that, for

illustrative purposes, only 0.25% of the discrete classifier combinations obtained from Haker’s

algorithm are presented in the figure. Also note that the resulting MAROC-curve, obtained by

considering all JK possible discrete classifier combinations, is completely specified by approxi-

mately 20 ROC-points.

Elitist MAROC-based classifier ensemble combination

In theory, Haker’s algorithm can be used to combine any number of continuous classifiers.
This is achieved by simply including an additional nested level of combinations for each
additional continuous classifier. In practise, however, the resulting computational cost
will render this combination strategy, even when a relatively small number of continuous
classifiers is considered, virtually intractable.

Consider, for example, the set of eight base classifiers developed in this study, each
occupying in excess of 1000 points in ROC-space. Of course, as the number of discrete
classifiers comprising any continuous classifier equals the number of distinct decision
thresholds utilised, this number may be predefined arbitrarily. In order to ensure sufficient
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continuity in an ROC-curve, however, it is recommended that a large number of decision
thresholds be employed. The base classifiers developed in this study each typically utilises
1100–1300 decision thresholds. For the purposes of this complexity analysis, however, the
assumption is made that each utilises exactly 1200 thresholds.

Let K = 1200 and N = 8 denote the length of each ROC-curve and the number of
ROC-curves considered for combination, respectively. The utilisation of Haker’s algo-
rithm to combine these N ROC-curves would therefore result in the computation of

KN ≈ 4.3× 1024 (5.5)

discrete classifier combinations. Even in a computing environment capable of performing
one million combinations per second, this calculation will take 136,253,000,000 years to
execute!

Since the calculation of all KN possible discrete classifier combinations is clearly not
a computationally viable option, given currently available computing systems, one is
forced to consider a diminished solution space, resulting in a potentially sub-optimal
solution. The primary objective therefore becomes the selection of a suitable subset of
discrete classifiers for inclusion into the classifier ensemble considered for combination.
Recent developments include the dynamic overproduce-and-choose strategy proposed by
Dos Santos et al. (2008), the hybrid genetic algorithm proposed by Kim and Oh (2008)
and the adaptive splitting and selection method proposed by Jackowski and Wozniak
(2009). These efforts represent only a small percentage of the strategies proposed in
the literature, but illustrate that the problem of classifier ensemble selection remains a
significant area of research.

In this study we propose a novel classifier ensemble combination strategy. Whilst util-
ising Haker’s original algorithm, we propose the iterative combination of ROC-curves with
MAROC-curves, as an alternative to the nested combination of ROC-curves, in order to
achieve classifier ensemble combination. By considering MAROC-curves as suitable can-
didates for classifier combination, this strategy greatly reduces the overall computational
cost.

In this strategy, the process of combining N ROC-curves is achieved in N − 1 sep-
arate iterations. The first iteration involves combining two K-point ROC-curves using
Haker’s algorithm, consequently producing K2 discrete classifier combinations. In each
of the subsequent N − 2 iterations, however, one of the remaining K-point ROC-curves
is combined, again using Haker’s algorithm, with the L-point MAROC-curve obtained
during the previous iteration, consequently producing KL discrete classifier combina-
tions. Letting L = 20 denote the length of a typical MAROC-curve (see Figure 5.1), the
combination of N ROC-curves consequently results in the computation of

K2 + (N − 2)(KL) = 1.58× 106 (5.6)

discrete classifier combinations. Using the same computing environment described earlier,
the execution time is reduced to 1.58 seconds!

As clearly illustrated by the previous example, this strategy definitely satisfies the
requirement of computational efficiency. The only remaining question is therefore whether
the resulting solution adequately satisfies the requirement regarding optimality, as only

K2 + (N − 2)(KL)

KN
× 100 = 3.68× 10−19% (5.7)
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of all possible combinations are considered.
The issue of optimality is addressed in a surprisingly simple and elegant manner.

As mentioned in the previous section, a MAROC-curve represents the convex hull of all
discrete classifiers generated during a single iteration. We therefore know that all discrete
classifier combinations not represented in the MAROC-curve are, within the context of
a single iteration, sub-optimal. Furthermore, during combination, the set of N ROC-
curves are presented to the algorithm in a specific order, namely from lowest to highest
corresponding AUC-measure. In this manner, it is ensured that the majority of discarded
classifier combinations are associated with the relatively inaccurate classifiers.

This elitist approach therefore maximises the likelihood that the sub-optimal solution
obtained is not significantly inferior to the optimal solution. In addition, the inclusion of a
relatively inaccurate base classifier would not directly reduce overall system performance,
as its contribution is simply discarded during combination.

5.4 Concluding remarks

In Chapters 3 and 4 we discussed the design and implementation of a typical base classifier
developed in this study. In this chapter we discussed how the verification performance
achieved by such a base classifier can be improved upon, by constructing a superior
combined classifier which utilises the efforts of several base classifiers. Both score-based
and decision-based fusion strategies are considered.

In the next chapter, the verification performance achieved by the individual base
classifiers, as well as the combined classifiers, is experimentally evaluated.



Chapter 6

Experiments

“It doesn’t matter how beautiful your theory is. If it doesn’t agree with experiment, it’s

wrong.”
- Richard Feynman (1918–1988)

6.1 Introduction

In Chapters 3–5 we established the theoretical background required to develop several
candidates for an efficient off-line signature verification system. Each such candidate may
utilise either a single DTW or HMM base classifier, or combine the efforts of an ensemble
constructed from several base classifiers.

In this chapter, we optimise and evaluate each of these verification system candidates
experimentally. In Section 6.2 we present the data set used for experimentation, whilst
Section 6.3 discusses the experimental protocol. Results obtained for each of the evalu-
ated systems are reported in Section 6.4. In Section 6.5 we experimentally confirm the
contributions made in this study. In Section 6.6 the results are compared to the results
reported for previous systems proposed in the literature.

6.2 Data

The signature database considered in this study contains 4837 signatures obtained from
51 different writers. This data set, originally captured on-line, is referred to as Dolfing’s

data set, as it was originally utilised by Dolfing (1998) for the purpose of developing an
on-line signature verification system. Dolfing’s original data set has since been converted
into an off-line data set, thereby rendering it suitable for the evaluation of the classifiers
developed in this study. For a detailed discussion regarding the conversion algorithm, the
reader is referred to Coetzer (2005).

Since Dolfing’s data set was originally captured on-line, the resulting off-line repre-
sentation can be viewed as an ideal data set, in the sense that none of the signature
images suffer from the presence of background noise. In addition, each signature image
contained in the data set has a uniform stroke width of approximately 5 pixels.

During the acquisition of Dolfing’s data set, each of the 51 writers submitted 30 sig-
nature samples, contributing a total of 1530 genuine signatures. A total of 3000 amateur

56
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skilled forgeries and 307 professional skilled forgeries were subsequently collected. Only
the set of amateur skilled forgeries are considered in this study.

In order to gain further insight into the nature of Dolfing’s data set, we present a
collection of samples, one genuine signature for each of the 51 writers, in Figure 6.1.
From these samples, it is clear that the signatures comprising Dolfing’s data set represent
a wide variety of handwriting styles, as well as greatly varying levels of intricacy regarding
signature design.

Figure 6.1: Typical examples of signature images contained in Dolfing’s data set. Each image

represents a genuine signature belonging to one of the 51 enrolled writers. Note that all the

signatures presented have the same uniform stroke width of 5 pixels. This property is not clearly

illustrated in the figure, however, since the scale of the images differ.

6.3 Experimental protocol

In order to design the most sensible experimental protocol, it is necessary to create a
realistic analogy between the model evaluation process and the practical deployment of
a typical signature verification system.

Consider, for example, the processing of cheques within the banking environment. In
practise, prior to system deployment, signatures are gathered from a designated group
of individuals, commonly referred to as guinea pigs. These guinea pigs are considered



CHAPTER 6. EXPERIMENTS 58

representative of a potentially unlimited population. As a result, only guinea pig sig-
natures are used to optimise the model configuration, within a controlled environment.
Once deployed, the system constructs a writer-dependent signature model for each en-
rolled client, using the optimal model configuration as obtained from the set of guinea pig
writers. Each new client is required to supply a small set of genuine signature samples
for model training.

In order to simulate this scenario in our experimental setup, as illustrated in Figure
6.2, Dolfing’s data set is partitioned into two disjoint data sets. This partitioning is
discussed in the next section. The use of separate data sets for model optimisation (see
Section 6.3.2) and evaluation (see Section 6.3.3) therefore lends a much greater degree of
credibility to the results reported in this chapter, since the concepts of guinea pigs and
clients are sufficiently incorporated.

6.3.1 Data set partitioning

Prior to experimentation, it is required that Dolfing’s data set be partitioned into two
disjoint data sets. This partitioning ensures that different data is used for model op-
timisation and model evaluation, thereby avoiding potential over-fitting of the model
parameters. This requirement is of paramount importance, as the evaluation of an over-
fitted model is not only associated with a misrepresentation in verification proficiency, but
also a diminished generalisation potential. These topics are discussed further in Section
6.3.3.

The composition of these data set partitions, referred to as the optimisation set (OS)
and evaluation set (ES), is summarised in Table 6.1. It should be clear that the opti-
misation set is analogous to a set of guinea pig signatures, whilst the evaluation set is
analogous to a set of client signatures, as discussed in the previous section.

Dolfing’s data set Genuine Forgery

Optimisation set (34 writers)
TO 510 -
OB 272 1005
OC 238 1005

Evaluation set (17 writers)
TE 255 -
E 255 990

Table 6.1: The number of signatures used in the partitioning of Dolfing’s data set into a

separate optimisation set and evaluation set. The specific tasks associated with the subsets TO,

OB , OC , TE and E are discussed in Sections 6.3.2 and 6.3.3.

Note that the signatures allocated to each partition is further subdivided into the
disjoint sets TO, OB, OC , TE and E. Each of these sets facilitates a specific task during
model optimisation or evaluation, and is discussed further in Sections 6.3.2 and 6.3.3.
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Figure 6.2: Schematic representation of the experimental protocol considered in this study.

Note that each process utilises a disjoint subset of signature data. Each entity Mi, Ci and C∗
i

denotes an untrained, trained and optimised base classifier, respectively. The entities O∗
1−N

and E∗
1−N denote the optimal combined classifier, as obtained from the optimisation set and

evaluation set, respectively, whilst M∗
1−N denotes the collection of untrained base classifiers

associated with the optimal classifier ensemble. Note that n denotes the number of available

base classifiers, whilst N denotes the number of base classifiers utilised in the optimal classifier

ensemble. Detailed discussions on model optimisation and model evaluation are presented in

Sections 6.3.2 and 6.3.3, respectively.
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6.3.2 Model optimisation

Base classifiers

The aim of model optimisation is to determine the optimal configuration for each base
classifier considered. In general, this configuration refers to the set of internal model
parameters, or hyper-parameters. In the case of discrete HMM base classifiers, these
parameters include the number of states, the number of allotted forward links per state,
as well as the VQ codebook size. For DTW base classifiers, only the bandwidth is
considered to be adjustable. For any classifier utilising a grid-based feature extraction
technique, the segmentation grid resolution is also considered an adjustable parameter.

In this study, however, since we are more interested in the significance of the flexible
grid segmentation strategy, only the grid configuration is optimised, whilst all other
hyper-parameters are held fixed. These parameter values, presented in Table 6.2, are
determined experimentally prior to model optimisation. A relatively small set of values,
similar to values that proved to be optimal in previous studies reported in the literature,
are considered.

Configuration Parameter Section Value

Adaptable grid
lx 3.3.2 2
ly 3.3.2 2

VQ codebook
K (PD,PS) 3.5.1 130

K (GCD,ORT) 3.5.1 125
DTW Hvec 4.3.1 0.25d

HMM
N 4.4.2 0.25T
l 4.4.3 2

pmin B.3.3 10−8

Table 6.2: The set of fixed model hyper-parameter values. These values are fixed prior to

model optimisation, thereby greatly decreasing the number of model configurations to consider.

Note that reference is made to the section in which each parameter is introduced. Also note that

d and T refer to the feature vector dimension and observation sequence length, respectively, as

introduced in Section 1.2.1.

The set of flexible grid configurations considered during optimisation are presented
in Table 6.3. Note that the special case ̥x = ̥y = 0 is included, thereby ensuring that
rigid segmentation grids are also considered during optimisation.

Parameter Value set
M {10,20}
N {20,40}
̥x {0,0.25, . . . ,2}
̥y {0,0.25, . . . ,2}

Table 6.3: The set of flexible grid parameter values considered for model optimisation. Since

̥x = ̥y = 0 is included, the combination of these parameter values results in a total of 4 rigid

segmentation grids and 320 flexible segmentation grids considered per base classifier.
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During base classifier optimisation, only the optimisation set is used. Each model
Mi is trained using signature patterns contained in TO, consequently yielding the trained
base classifier Ci. Model performance is determined by testing Ci on signature patterns
contained in OB. After testing each grid configuration considered, only the optimal base
classifier C∗

i is retained.
The performance measures yielded during the optimisation process may only be used

to assess the model configuration. Using these measures to denote overall verification
proficiency constitutes an over-fitted depiction of model performance.

Combined classifiers

When constructing a combined classifier, each base classifier C∗
i has already been opti-

mised with respect to its grid configuration. No further alterations are therefore required
with regard to base classifier model configurations. As mentioned in Sections 5.2 and 5.3,
however, the inclusion of a relatively inaccurate base classifier into the classifier ensemble
can negatively impact the performance of the combined classifier.

The process of finding the most proficient combined classifier therefore only entails the
task of selecting the most proficient ensemble of base classifiers, given a certain fusion
strategy, where each ensemble is constructed from models already trained on TO and
optimised on OB. The performance of each combined classifier C∗

1−N is then determined
using signatures contained in OC. After assessing each ensemble selection considered,
only the optimal combined classifier O∗

1−N is retained for evaluation.

6.3.3 Model evaluation

During model evaluation, only the evaluation set is used. The models comprising O∗
1−N ,

however, belong to the set of writers contained in the optimisation set. As a result,
the corresponding models M∗

1−N are retrained using signature patterns contained in TE ,
yielding the optimal combined classifier E∗

1−N . Verification proficiency is subsequently
evaluated using signature patterns contained in E.

It should be clear that, for the purposes of base classifier evaluation, an identical
protocol can be used. In such cases, a trivial ensemble, composed of a single base classifier,
is presented for evaluation.

System performance is gauged using the AUC and EER measures. In addition, the
generalisation potential of each classifier is measured by introducing the generalisation

error ǫ, defined as
ǫ = AUCO −AUCE, (6.1)

where AUCO and AUCE denote the AUC achieved using the optimisation set and eval-
uation set, respectively. By using an evaluation set completely disjoint from the opti-
misation set, an objective depiction of performance regarding both model accuracy and
generalisation potential is obtained, since the impact of model over-fitting is completely
avoided.
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6.3.4 Cross-validation

The model optimisation and evaluation processes, as discussed in the previous sections,
convincingly address the issue of model over-fitting. The use of separate optimisation
and evaluation data sets, however, gives rise to another important issue regarding the
credibility of results reported.

Consider, for example, the varied levels of intricacy displayed by the writers in Dolf-
ing’s data set (see Figure 6.1). It should logically be expected that a relatively simple
signature design is easier to reproduce than a considerably more complex one. Through-
out the literature, writers possessing easily reproducible signatures are often referred to as
sheep. In contrast, a writer whose signature is relatively difficult to reproduce is referred
to as a wolf.

The data set partitioning method discussed in Section 6.3.1, however, only takes into
account the number of writers contained in each partition - not the nature of signatures
allocated. The optimisation set may, for example, contain mostly wolves, whilst the
evaluation set contains mostly sheep. This would lead to unrealistically high system per-
formance. Conversely, a system may be optimised using mostly sheep and subsequently
evaluated using mostly wolves. Although relatively poor results are expected, this will
not be a true reflection of the system performance.

In order to address this issue, experiments conducted in this study perform model
optimisation and evaluation based on the stratified1 k-fold cross-validation2 principle,
as illustrated in Figure 6.3. Since Dolfing’s data set contains 51 writers, the classifiers
developed in this study are evaluated using k = 3 folds. Also, since each fold constitutes
an independent experiment, the performance of each classifier is represented by µAUC,
µEER and µǫ, denoting the average performance achieved over all the folds. Although it
is common practise to also report the standard deviation of the performance achieved,
this measure is deemed redundant within the context of a 3-fold protocol.

By employing the cross-validation strategy, the results reported in this study are
therefore obtained using all the writers contained in Dolfing’s data set, thereby avoiding
the experimental influence of sheep and wolves. As a result, the performance reported in
the next section is not only objective, but also comprehensive.

6.4 Results

In this section we present the results obtained by optimising and evaluating the set of
base classifiers and combined classifiers experimentally, using the protocol discussed in
Section 6.3.

Note that all the tabulated results indicate the performance achieved during each
separate fold, in addition to the corresponding average performance. All graphical results,
however, denote only the average ROC-based performance. The ROC-curves presented
are obtained by taking the average TPR and FPR achieved across all the folds, for each
distinct decision threshold τ .

1Stratified cross-validation requires that a similar distribution of positive and negative test patterns
is shared between the original data set and each of its partitions.

2The subsets OB and OC , as contained in the optimisation set, can also constitute an independent
data set, referred to as the validation set throughout the literature.
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Figure 6.3: The 3-fold cross-validation procedure considered in this study. Each rectangular

segment, within the context of a single fold, represents the signature set belonging to one of

the 51 writers contained in Dolfing’s data set. As the fold index increases, the optimisation

set and evaluation set are shifted 17 writers to the right, thereby considering all 51 writers for

evaluation over the 3 folds.

6.4.1 Base classifiers

DTW base classifiers

The optimisation of the grid configurations used by the DTW base classifiers, as discussed
in Section 6.3.2, yields the set of optimal segmentation grids presented in Table 6.4.

Optimisation set

DTW
Feature

PD GCD ORT PS
Fold 1 200 × 201.25 101 × 200.5 101 × 200.5 200.25 × 200.75

Fold 2 201.75 × 200.75 100.75 × 401 200.75 × 201 100.25 × 200.75

Fold 3 201.5 × 200.75 100.75 × 401 200.75 × 201 100.25 × 200.75

Table 6.4: Optimal grid configurations obtained for the set of DTW base classifiers.

It is clear from Table 6.4 that there is no one specific optimal grid configuration for
any of the features considered, thereby reiterating the importance of model optimisation
within the context of the deployment environment. It is also important to note that, for
all features considered and across all folds, none of the optimal segmentation grids are
rigid, thereby emphasising the significance of the flexible grid-based feature extraction
technique proposed in this study.

The AUC and EER measures achieved during model optimisation and model evalu-
ation are presented in Table 6.5. The performance achieved is also illustrated in Figure
6.4.

Similar results are obtained when utilising the pixel density, gravity centre distance
and orientation features. It is clear that the classifier utilising the predominant slant
feature significantly outperforms its peers, in terms of both verification accuracy and
generalisation potential, as presented in Table 6.6.
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Optimisation set

DTW
Feature

PD GCD ORT PS
AUC (%)

Fold 1 90.74 90.87 91.30 93.34
Fold 2 92.54 91.48 90.14 92.41
Fold 3 90.08 90.70 92.73 94.17
µAUC 91.12 91.02 91.39 93.31

EER (%)
Fold 1 17.27 16.99 16.99 13.28
Fold 2 15.51 16.56 18.41 14.71
Fold 3 18.03 17.22 15.47 12.81
µEER 16.94 16.92 16.96 13.60

Evaluation set

DTW
Feature

PD GCD ORT PS
AUC (%)

Fold 1 90.68 90.15 87.21 91.55
Fold 2 86.48 88.41 92.78 93.08
Fold 3 92.55 91.39 88.88 92.43
µAUC 89.90 89.98 89.62 92.35

EER (%)
Fold 1 16.87 18.41 20.75 15.67
Fold 2 22.35 19.95 14.90 13.73
Fold 3 15.67 16.07 20.00 13.33
µEER 18.30 18.14 18.55 14.24

Table 6.5: Results obtained for the set of DTW base classifiers.
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Figure 6.4: ROC-based performance achieved by the set of DTW base classifiers, using both

the optimisation set and the evaluation set.
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Dolfing’s data set
Feature PD GCD ORT PS
µǫ (%) 1.22 1.04 1.77 0.96

Table 6.6: Generalisation errors obtained for the set of DTW base classifiers, using both the

optimisation set and the evaluation set.

From Table 6.6 we deduce that each DTW base classifier is able to sufficiently repro-
duce its verification performance, given a set of signatures outside the optimisation set.
The generalisation potential of each classifier is also clearly illustrated by the ROC-curves
(see Figure 6.4) obtained during optimisation and evaluation. For each base classifier,
the generalisation error is equivalent to the area between said ROC-curves.

HMM base classifiers

The optimisation of the grid configuration used by the HMM base classifiers, as discussed
in Section 6.3.2, yields the set of optimal segmentation grids presented in Table 6.7.

Optimisation set

HMM
Feature

PD GCD ORT PS
Fold 1 100.75 × 400.75 200 × 401 100.25 × 401 200 × 401.25

Fold 2 100.75 × 401 100.25 × 400.25 100.5 × 400.5 200.5 × 400

Fold 3 100.5 × 400.5 100.25 × 400.75 101.25 × 401 201 × 401

Table 6.7: Optimal grid configurations obtained for the set of HMM base classifiers.

As is the case with the set of DTW base classifiers, no single optimal grid configuration
is identified for any of the features considered. Also, no optimal grid configuration utilises
a rigid segmentation grid. It is worth noting that each optimal grid configuration, in
the context of an HMM base classifier, contains 40 columns - which is the maximum
number considered. This was expected, as it is associated with the maximum number of
HMM states considered. It has been confirmed experimentally, however, using the feature
extraction techniques proposed in this study, that any further increase in the number of
grid columns does not result in a further improvement in classifier performance.

The AUC and EER measures achieved during model optimisation and model evalua-
tion are presented in Table 6.8. The performance is also illustrated in Figure 6.5.

The set of HMM base classifiers achieves comparable results, except for the classifier
utilising the pixel density feature, which significantly outperforms those utilising the
gravity centre distance, orientation and predominant slant features. On average, the
HMM base classifiers outperform their DTW-based counterparts. This was expected,
since these classifiers incorporate a greater level of complexity into their writer-dependent
signature models, as discussed in Section 4.4.1. The generalisation error of each HMM
base classifier is presented in Table 6.9.

When compared to the results presented in Table 6.6, a slight improvement in the
generalisation potential of the classifiers is evident. From Table 6.9 we deduce that each
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Optimisation set

HMM
Feature

PD GCD ORT PS
AUC (%)

Fold 1 93.90 90.00 92.18 93.43
Fold 2 93.27 90.17 90.24 90.92
Fold 3 93.47 89.79 91.97 92.71
µAUC 93.55 89.99 91.46 92.35

EER (%)
Fold 1 14.33 18.41 15.13 14.28
Fold 2 14.38 17.27 18.08 16.94
Fold 3 14.33 18.03 15.09 14.75
µEER 14.35 17.90 16.10 15.32

Evaluation set

HMM
Feature

PD GCD ORT PS
AUC (%)

Fold 1 92.39 91.70 90.23 91.54
Fold 2 92.97 88.86 92.00 90.85
Fold 3 93.07 89.66 88.96 90.17
µAUC 92.81 90.07 90.40 90.85

EER (%)
Fold 1 14.18 16.57 15.62 15.67
Fold 2 14.22 18.48 15.00 16.47
Fold 3 14.88 18.41 18.01 18.06
µEER 14.43 17.82 16.21 16.73

Table 6.8: Results obtained for the set of HMM base classifiers.
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Figure 6.5: ROC-based performance achieved by the set of HMM base classifiers, using both

the optimisation set and the evaluation set.
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Dolfing’s data set
Feature PD GCD ORT PS
µǫ (%) 0.74 -0.08 1.06 1.50

Table 6.9: Generalisation errors obtained for the set of HMM base classifiers, using both the

optimisation set and the evaluation set.

HMM base classifier is also able to sufficiently reproduce its verification performance,
given a set of signatures outside the optimisation set.

In particular, the negative generalisation error achieved, when utilising the gravity
centre distance feature, indicates better performance for the evaluation set than the op-
timisation set. This classifier is therefore said to possess perfect generalisation potential,
at least when using Dolfing’s data set.

Base classifier ranking

In the next section, we optimise and evaluate the set of combined classifiers discussed
in Chapter 5. As mentioned in Section 6.3.2, the optimisation of a combined classifier
consists of identifying the optimal number of base classifiers to be included into the
ensemble considered for combination. When constructing such a combined classifier, the
most important pitfall to avoid is the inclusion of a relatively inaccurate base classifier.

For this reason, each of the DTW and HMM base classifiers, as optimised and eval-
uated in the previous section, is assigned a specific ranking, based on its performance
achieved using Dolfing’s optimisation set.

During the remainder of this chapter, when referring to an N -level combined classifier
C1−N , we therefore refer to a combined classifier utilising only the set of N top ranked
base classifiers, as presented in Table 6.10.

Optimisation set

Rank
Fold 1 Fold 2 Fold 3

C F P C F P C F P
1 HMM PD 93.90 HMM PD 93.27 DTW PS 94.17
2 HMM PS 93.43 DTW PD 92.54 HMM PD 93.47
3 DTW PS 93.34 DTW PS 92.41 DTW ORT 92.73
4 HMM ORT 92.18 DTW GCD 91.48 HMM PS 92.71
5 DTW ORT 91.30 HMM PS 90.92 HMM ORT 91.97
6 DTW GCD 90.87 HMM ORT 90.24 DTW GCD 90.70
7 DTW PD 90.74 HMM GCD 90.17 DTW PD 90.08
8 HMM GCD 90.00 DTW ORT 90.14 HMM GCD 89.79

Table 6.10: Performance-based ranking of the DTW and HMM base classifiers, as obtained

during model optimisation. For each base classifier, the classification technique (C), feature

extraction technique (F) and resulting AUC (%) performance measure (P) is specified.
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6.4.2 Combined classifiers

The optimisation of the classifier ensemble selection used by the each of the combined
classifiers, as discussed in Section 6.3.2, yields the set of optimal combination levels
presented in Table 6.11.

Optimisation set
Strategy

SA MV MAROC
Fold 1 4 4 8
Fold 2 8 7 8
Fold 3 5 5 8

Table 6.11: Optimal combination levels for the set of combined classifiers.

Both the SA and MV combined classifiers reveal a sensitivity regarding the inclusion
of relatively inaccurate base classifiers into the classifier ensemble. This is expected,
since all the base classifiers in the ensemble have an equal contribution towards the final
decision, as discussed in Sections 5.2 and 5.3.1. The efforts of relatively inaccurate base
classifiers therefore impede the potential gain in proficiency provided by combining only
top ranked base classifiers.

The MAROC combined classifier, in contrast, is consistently improved upon by in-
cluding the entire set of available base classifiers into the classifier ensemble. As discussed
in Section 5.3.2, this is due to the fact that any discrete classifier combinations, shown to
perform relatively poorly, can simply be discarded during the combination process. This
superior robustness of the MAROC combined classifier enables it to isolate the efforts of
any sufficiently accurate discrete classifiers contained in one of the relatively inaccurate
base classifiers.

The AUC and EER measures achieved during model optimisation and model evalua-
tion are presented in Table 6.12. The performance is also illustrated in Figure 6.6.

Optimisation set
Strategy

SA MV MAROC
AUC (%)

Fold 1 96.18 96.69 97.82
Fold 2 96.74 97.06 97.28
Fold 3 95.70 96.80 97.96
µAUC 96.21 96.85 97.69

EER (%)
Fold 1 10.09 8.82 7.65
Fold 2 9.64 8.37 9.22
Fold 3 10.09 8.42 8.59
µEER 9.94 8.54 8.49

Evaluation set
Strategy

SA MV MAROC
AUC (%)

Fold 1 94.94 96.34 94.00
Fold 2 95.04 95.22 94.24
Fold 3 95.21 95.83 93.87
µAUC 95.06 95.80 94.04

EER (%)
Fold 1 12.54 10.20 11.56
Fold 2 10.98 10.64 11.96
Fold 3 10.10 9.85 14.11
µEER 11.21 10.23 12.54

Table 6.12: Results obtained by the set of combined classifiers.
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Figure 6.6: ROC-based performance achieved by the set of combined classifiers, using both

the optimisation set and the evaluation set.

When compared to the results presented in Tables 6.5 and 6.8, it is clear that a
definite gain in verification proficiency is achieved by employing any suitable classifier
ensemble combination strategy. Each of the combined classifiers yields significantly bet-
ter performance measures than the top ranked base classifier, especially regarding the
AUC-measure, indicating a convincing improvement in overall system performance. The
generalisation error of each combined classifier is presented in Table 6.13.

Dolfing’s data set
Strategy SA MV MAROC
µǫ (%) 1.15 1.05 3.65

Table 6.13: Generalisation errors obtained for the set of combined classifiers, using both the

optimisation set and the evaluation set.

From Table 6.13, it is clear that both the SA and MV combined classifiers are able
to sufficiently reproduce their verification performance, given a set of signatures outside
the optimisation set.

The MAROC combined classifier, however, experiences a relatively significant decrease
in performance when gauged on the evaluation set. In fact, whilst clearly being the most
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proficient classifier when considering only the optimisation set, the MAROC combined
classifier is subsequently outperformed on the evaluation set by both the SA and MV
combined classifiers. This is most likely due to the fact that the set of DTW and HMM
base classifiers, when used to construct a classifier ensemble, do not sufficiently satisfy the
requirement of conditional independence. This requirement plays an important role in
selecting the appropriate combination rule for each set of discrete classifiers contained in
these base classifiers. The issue of conditional independence, and specifically its influence
on the performance achieved by a MAROC combined classifier, is discussed further in
Section 6.5.2.

In conclusion, when considering Dolfing’s data set, the MV combined classifier out-
performs each of the other combined classifiers, in addition to each of the base classifiers.
The MV combined classifier is therefore nominated as the optimal off-line signature ver-
ification system developed in this study.

6.5 Contributions

During the course of this study, we claim to make two noteworthy contributions to the field
of off-line signature verification, namely a flexible grid-based feature extraction technique
and an elitist MAROC-based classifier ensemble combination strategy. In this section,
these claims are verified experimentally.

6.5.1 Flexible grid-based feature extraction

In order to investigate the advantage gained by employing a flexible grid-based feature
extraction technique, we repeat the base classifier optimisation and evaluation processes,
under the assumption that only rigid segmentation grids are available for feature extrac-
tion. Except for the strict requirement that ̥x = ̥y = 0 during model optimisation,
the experiments presented in this section are identical to the experiments presented in
Section 6.4.1, thereby nullifying the influence on classifier performance resulting from a
flexible grid-based approach.

DTW base classifierss

The optimisation of the rigid grid configurations, used by the DTW base classifiers, yields
the set of optimal segmentation grids presented in Table 6.14.

Optimisation set

DTW
Feature

PD GCD ORT PS
Fold 1 20× 20 10× 40 20× 20 20× 20
Fold 2 10× 40 10× 40 20× 20 10× 20
Fold 3 20× 20 10× 20 20× 20 10× 20

Table 6.14: Optimal grid configurations obtained for the set of DTW base classifiers, when

only rigid grid-based feature extraction is used.
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Except when utilising the orientation feature, there still exists variability regarding an
optimal feature-specific segmentation grid. The use of rigid grid-based feature extraction
therefore does not overcome the need for context-specific model optimisation.

The AUC and EER measures achieved during model optimisation and model evalua-
tion are presented in Table 6.15. In addition, the generalisation error for each DTW base
classifier is presented in Table 6.16.

Optimisation set

DTW
Feature

PD GCD ORT PS
AUC (%)

Fold 1 84.98 88.52 88.47 91.29
Fold 2 85.59 88.69 86.91 90.27
Fold 3 82.16 87.22 87.03 91.20
µAUC 84.24 88.14 87.47 90.92

EER (%)
Fold 1 23.15 19.88 19.78 16.89
Fold 2 23.53 21.30 21.68 17.65
Fold 3 26.09 22.44 21.40 17.70
µEER 24.26 21.21 20.95 17.41

Evaluation set

DTW
Feature

PD GCD ORT PS
AUC (%)

Fold 1 80.81 86.25 85.52 88.17
Fold 2 79.37 85.54 87.19 90.64
Fold 3 87.62 88.03 87.38 90.74
µAUC 82.60 86.61 86.70 89.85

EER (%)
Fold 1 26.27 23.54 22.35 19.60
Fold 2 27.45 23.53 20.83 16.96
Fold 3 20.35 19.30 21.19 16.47
µEER 24.69 22.12 21.46 17.68

Table 6.15: Results obtained for the set of DTW base classifiers, when considering only rigid

grid-based feature extraction.

Dolfing’s data set
Feature PD GCD ORT PS
µǫ (%) 1.64 1.53 0.77 1.07

Table 6.16: Generalisation errors obtained for the set of DTW base classifiers, when considering

only rigid grid-based feature extraction, using both the optimisation set and the evaluation set.

The results presented in Tables 6.15 and 6.16 are compared to the results achieved by
the set of DTW base classifiers reported in Section 6.4.1. These comparisons, presented
in Table 6.17 and Figure 6.7, indicate the contribution made by adopting a flexible
grid-based approach to feature extraction, within the context of DTW-based signature
modelling.

From Table 6.17 it is clear that, for each feature considered, the flexible grid-based
feature extraction technique significantly outperforms its rigid grid-based counterpart,
both in terms of the AUC and EER measures obtained.

The influence on generalisation potential associated with either a rigid grid-based
or flexible grid-based feature extraction process is not as clear. Slight improvements in
generalisation potential are observed when utilising the flexible grid-based pixel density,
gravity centre distance and predominant slant features. In contrast, utilising a rigid grid-
based orientation feature results in improved classifier generalisation. The improvement
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Dolfing’s data set

Performance Grid
Feature

PD GCD ORT PS

µAUC (%)
RG 82.60 86.61 86.70 89.85
FG 89.90 89.98 89.62 92.35
+/- +7.3 +3.37 +2.92 +2.50

µEER (%)
RG 24.69 22.12 21.46 17.68
FG 18.30 18.14 18.55 14.24
+/- -6.39 -3.98 -2.91 -3.44

µǫ (%)
RG 1.64 1.53 0.77 1.07
FG 1.22 1.04 1.77 0.96
+/- -0.42 -0.49 +1.00 -0.11

Table 6.17: Comparison of the results obtained for the set of DTW base classifiers, when

considering either a rigid grid (RG) or a flexible grid (FG) for feature extraction. The µAUC

and µEER measures are obtained using the evaluation set, whilst µǫ is obtained using both the

optimisation set and the evaluation set.
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Figure 6.7: ROC-based comparison between results achieved by the set of DTW base classi-

fiers, when considering a rigid grid (RG) and a flexible grid (FG) for feature extraction. Results

are obtained using the evaluation set.
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achieved in terms of the corresponding AUC measure, however, certainly outweighs this
loss in generalisation potential.

We can therefore deduce with certainty that, within the context of DTW-based sig-
nature modelling, the use of flexible grid-based feature extraction techniques result in a
definite improvement in classifier performance. This gain in classifier performance was ex-
pected, since feature vectors constructed by the flexible grid-based approach inherently
contain information regarding the succession of feature vectors within the feature set.
This additional information (which is not provided by rigid grid-based feature vectors)
thereby adds a degree of robustness to the standard DTW-based approach to signature
modelling.

HMM base classifiers

The optimisation of the rigid grid configurations, used by the HMM base classifiers, yields
the set of optimal segmentation grids presented in Table 6.18.

Optimisation set

HMM
Feature

PD GCD ORT PS
Fold 1 10× 40 10× 40 10× 40 20× 40
Fold 2 10× 40 10× 40 10× 40 10× 40
Fold 3 10× 40 10× 40 10× 40 20× 40

Table 6.18: Optimal grid configurations obtained for the set of HMM base classifiers, when

considering only rigid grid-based feature extraction.

When employing rigid grid segmentation, most of the HMM base classifiers do in fact
appear to share a common optimal grid configuration. This is, however, not the case
when utilising the predominant slant feature, indicating that variability regarding grid
configuration may possibly be revealed when increasing the number of folds considered.
As was observed from the HMM base classifiers utilising flexible grid-based feature ex-
traction (see Section 6.4.1), each optimal rigid grid contains the maximum number of
grid columns considered during optimisation.

The AUC and EER measures achieved during model optimisation and model evalua-
tion are presented in Table 6.19. In addition, the generalisation error for each HMM base
classifier is presented in Table 6.20.

The results presented in Tables 6.19 and 6.20 are compared to the results achieved by
the set of HMM base classifiers reported in Section 6.4.1. These comparisons, presented
in Table 6.21 and Figure 6.8, indicate the contribution made by adopting a flexible
grid-based approach to feature extraction, within the context of HMM-based signature
modelling.

A consistent improvement in classifier performance is observed when employing flexi-
ble grid-based feature extraction, regardless of the feature considered. The improvements
in the AUC and EER measures are, however, less significant than the improvements wit-
nessed in the case of the DTW base classifiers. This was expected, as the issue of feature
vector succession, one of the main advantages of adopting a flexible grid-based approach,
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Optimisation set

HMM
Feature

PD GCD ORT PS
AUC (%)

Fold 1 90.30 88.61 88.95 91.36
Fold 2 86.28 86.80 88.00 88.51
Fold 3 89.96 87.27 87.04 89.96
µAUC 88.85 87.56 88.00 89.94

EER (%)
Fold 1 16.18 20.21 19.12 16.23
Fold 2 20.87 20.54 19.55 17.70
Fold 3 16.18 19.88 21.30 16.94
µEER 17.74 20.21 19.99 16.96

Evaluation set

HMM
Feature

PD GCD ORT PS
AUC (%)

Fold 1 91.04 89.73 89.70 91.04
Fold 2 90.09 88.02 90.63 90.44
Fold 3 91.54 89.79 88.78 88.27
µAUC 90.89 89.18 89.70 89.92

EER (%)
Fold 1 17.16 18.82 17.26 16.82
Fold 2 17.75 21.18 16.86 18.04
Fold 3 16.92 18.41 18.81 20.80
µEER 17.28 19.47 17.64 18.55

Table 6.19: Results obtained for the set of HMM base classifiers, when considering only rigid

grid-based feature extraction.

Dolfing’s data set
Feature PD GCD ORT PS
µǫ (%) 2.04 -1.62 -1.70 0.02

Table 6.20: Generalisation errors obtained for the set of HMM base classifiers, when consider-

ing only rigid grid-based feature extraction, using both the optimisation set and the evaluation

set.

Dolfing’s data set

Performance Grid
Feature

PD GCD ORT PS

µAUC (%)
RG 90.89 89.18 89.70 89.92
FG 92.81 90.07 90.40 90.85
+/- +1.92 +0.89 +0.70 +0.93

µEER (%)
RG 17.28 19.47 17.64 18.55
FG 14.43 17.82 16.21 16.73
+/- -2.85 -1.65 -1.43 -1.82

µǫ (%)
RG 2.04 -1.62 -1.70 0.02
FG 0.74 -0.08 1.06 1.5
+/- -1.30 +1.54 +2.76 +1.48

Table 6.21: Comparison of the results obtained for the set of HMM base classifiers, when

considering either a rigid grid (RG) or a flexible grid (FG) for feature extraction. The µAUC

and µEER measures are obtained using the evaluation set, whilst µǫ is obtained using both the

optimisation set and the evaluation set.
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Figure 6.8: ROC-based comparison between results obtained for the set of HMM base clas-

sifiers, when considering either a rigid grid (RG) or a flexible grid (FG) for feature extraction.

Results are obtained using the evaluation set.

is already addressed by the left-right HMM-based signature modelling strategy. Never-
theless, the additional information regarding signature time-evolution does assist in the
construction of more accurate HMM-based signature models.

It is interesting to note that, apart from when utilising the pixel density feature, a
consistent improvement in generalisation potential is observed when employing rigid grid-
based feature extraction. This is most likely due to context-specific optimisation of the
flexibility parameters, thereby creating a highly specialised verification system. Since the
improvement in classifier performance is undeniable, though, the prioritisation of either
observed verification results or expected generalisation potential is open for debate.

Arguing the greater importance of verification results, we can therefore deduce that,
within the context of HMM-based signature modelling, the use of flexible grid-based
feature extraction techniques result in a definite improvement in classifier performance.

6.5.2 Elitist MAROC-based classifier ensemble combination

Since the elitist MAROC-based classifier ensemble combination strategy is, in essence,
based solely on Haker’s algorithm, it is sensible to investigate whether the results yielded
by a traditional implementation of said algorithm is comparable to the results yielded by
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the MAROC-based approach. In order to ensure clear and sensible graphical representa-
tions, only fold 1 is considered for this comparison.

As mentioned in Section 5.3.2, Haker’s algorithm was specifically designed for the
combination of a pair of continuous classifiers. We therefore utilise only the two top
ranked base classifiers. The subsequent construction of a combined classifier, based on
the traditional implementation of Haker’s algorithm, is illustrated in Figure 6.9.

When using the optimisation set, this combined classifier yields AUC and EER mea-
sures of 95.88% and 10.74%, respectively. When using the evaluation set, these measures
deteriorate to 94.34% and 12.88%, respectively. A generalisation error of 1.54% is there-
fore obtained.

Figure 6.9: ROC-based performance of the combined classifier, using only the two most profi-

cient base classifiers, constructed using Haker’s algorithm. Only the optimisation set associated

with fold 1 is used. Note the significant difference between predicted and estimated perfor-

mance - indicating an insufficient degree of independence between the two classifiers submitted

for combination.

As shown earlier, the optimal MAROC combined classifier utilises the entire set of
available base classifiers. The combination process is therefore performed in seven itera-
tions, as illustrated in Figures 6.10 and 6.11. The reader is reminded that this approach
combines the set of base classifiers in a specific order, namely least proficient to most
proficient, as indicated by the corresponding AUC-measure. In addition, since the set of
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base classifiers utilised are insufficiently independent, each intermediate combined classi-
fier is constructed using the estimated performance of its predecessor, as opposed to the
predicted performance.

It is deemed redundant to include full-scale graphical representations of each iteration,
since each corresponding figure illustrates the same general concept. For this reason, only
the final iteration is presented in full scale, wherein we indicate each of the relevant entities
associated with the combination process.

When using the optimisation set, the iteration-specific performance measures pre-
sented in Table 6.22 are obtained.

Optimisation set
Estimated Iteration

performance 1 2 3 4 5 6 7
AUC (%) 93.58 94.73 95.71 96.59 97.31 97.54 97.82
EER (%) 14.37 12.30 10.89 9.75 9.22 8.85 7.65

Table 6.22: Results obtained for the set of intermediate MAROC combined classifiers con-

structed during iterations 1–7. Only the optimisation set associated with fold 1 is used.

During iterations 1–3, we observe results inferior to those achieved when applying
Haker’s algorithm to the two most proficient continuous base classifiers. This is reason-
able, as iterations 1–3 represent a combination of the set of four least proficient base
classifiers. During each subsequent iteration, however, the MAROC combined classifier
consistently outperforms the combined classifier yielded by Haker’s algorithm.

When using the evaluation set, the optimal MAROC combined classifier yields AUC
and EER measures of 94.00% and 11.56%, respectively. This combined classifier therefore
yields a generalisation error of 3.91%.

From this example, the MAROC-based combination strategy improves system perfor-
mance to a greater extent than Haker’s algorithm, albeit not significantly, when tested
on the evaluation set. This comparison is presented graphically in Figure 6.12. As men-
tioned earlier, however, the DTW and HMM base classifiers developed in this study do
not adequately satisfy the independence criterion, resulting in sub-optimal performance
of the corresponding MAROC combined classifier.

We are therefore equally interested in the predicted performance of the MAROC
combined classifier, as these measures can be used to infer optimal classifier performance,
given independent base classifiers. This optimal performance can be expected when
combining sufficiently independent base classifiers, each with an individual performance
comparable to the base classifiers developed in this study. When using the optimisation
set, the iteration-specific predicted performance measures presented in Table 6.23 are
obtained.

From Table 6.23 it is abundantly clear that the requirement of independent classi-
fier decisions plays a critical role in the success of a MAROC combined classifier. The
predicted results achievable not only indicate the degree of dependence between the set
of base classifiers developed in this study, but also indicate the significant improvement
in system performance expected when a classifier ensemble that does satisfy the inde-
pendence criterion is combined. The successful design and implementation of such a
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Figure 6.10: ROC-based performance of the set of intermediate MAROC combined classifiers

constructed during iterations 1–6. Only the optimisation set associated with fold 1 is used. The

final iteration is presented in more detail in Figure 6.11.
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Figure 6.11: ROC-based performance of the MAROC combined classifier constructed during

the seventh and final iteration. Only the optimisation set associated with fold 1 is used. Note

that, similar to iterations 2–6, the combination of a ROC-curve with a MAROC-curve is associ-

ated with significantly fewer discrete classifier combinations than Haker’s original algorithm. It

is this property that renders the MAROC-based combination strategy computationally feasible

for a much larger number of continuous classifiers, as discussed in Section 5.3.2.

Optimisation set
Predicted Iteration

performance 1 2 3 4 5 6 7
AUC (%) 94.21 98.07 98.78 99.43 99.68 99.82 99.89
EER (%) 9.75 6.44 5.00 3.10 2.27 1.64 1.26

Table 6.23: Predicted performance of the set of intermediate MAROC combined classifiers

constructed during iterations 1–7. Only the optimisation set associated with fold 1 is used.

These predictions assume conditionally independent classifier decisions.
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Figure 6.12: ROC-based comparison between results obtained for the combined classifier using

Haker’s algorithm with the MAROC combined classifier developed in this study. Results are

obtained using only the evaluation set associated with fold 1.

conditionally independent classifier ensemble therefore definitely warrants further inves-
tigation. Such an investigation, however, is considered outside the scope of this study.

6.6 Comparison with previous work

Since each of the verification system candidates developed in this study utilises a flexible
grid-based feature extraction technique, these systems may be considered novel. In this
section, we are more interested in whether any of these novel systems contribute to the
current state of the art in terms of verification proficiency.

As mentioned in Section 2.1, there currently exists no standard international signa-
ture database to facilitate a direct comparison between results reported in this study with
results reported in the literature. We are therefore limited in the sense that only verifica-
tion systems evaluated using Dolfing’s data set may be used for such a comparison. Two
such systems are found in the literature, namely the on-line verification system proposed
by Dolfing (1998) and the off-line verification system proposed by Coetzer et al. (2004).

Since Dolfing’s system is aimed at the verification of dynamic signatures, it is not
entirely sensible to directly compare all his reported results to the results reported in this
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study. We may, however, use the algorithm developed by Dolfing which considers only
the spatial coordinates of dynamic signatures. Even so, this algorithm uses both pen
stroke coordinates and pen trajectory information, thereby giving it a distinct advantage
over systems developed in this study.

Since the system proposed by Coetzer et al. is aimed at the verification of static
signatures, no such discrepancies are present in the model training process. This system
is therefore considered much more suitable for comparison to the results reported in
this study. It is worth mentioning, however, that the HMM-based system developed by
Coetzer et al. uses the same data set for both model optimisation and evaluation. This
system therefore also has an advantage over systems developed in this study, although to
a much lesser extent.

The results reported by Dolfing and Coetzer et al. are presented in Table 6.24, along
with the results reported for the SA and MV combined classifiers developed in this study.
The MAROC combined classifier is not included in this comparison, since it was shown
in Section 6.5.2 that this combination strategy, when employed on the DTW and HMM
base classifiers developed in this study, performs sub-optimally. We therefore reserve the
comparison of a MAROC combined classifier, to suitable systems found in the literature,
for a future study.

Author/System EER (%)
Dolfing (1998) 13.3

Coetzer et al. (2004) 12.2
SA (This study) 11.21
MV (This study) 10.23

Table 6.24: Comparison of the results obtained for the SA and MV combined classifiers de-

veloped in this study, after considering amateur forgeries only, with previous systems evaluated

using Dolfing’s data set.

The results reported for both the SA and MV combined classifiers compare well with
the results reported by Dolfing, as well as those reported by Coetzer et al.. Since the
experimental protocol used in this study ensures an objective, comprehensive measure of
performance, the results reported in this study are considered a credible improvement.

6.7 Concluding remarks

In this chapter we evaluated the performance achieved by the set of DTW and HMM
base classifiers, as well as the set of score-based and decision-based combined classifiers,
developed in this study. Each verification system candidate was optimised and evaluated
using separate data sets, in conjunction with a 3-fold cross-validation protocol, thereby
ensuring the credibility of results reported in this chapter.

The model evaluation process revealed that the set of HMM base classifiers generally
outperforms the set of DTW base classifiers. The optimal DTW base classifier, utilising a
predominant slant feature, and the optimal HMM base classifier, utilising a pixel density
feature, achieve comparable performance measures. Furthermore, it was shown that the
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set of combined classifiers consistently outperform both the optimal DTW and HMM
base classifiers. The MV combined classifier proved most proficient.

In addition, the significance of the flexible grid-based feature extraction technique, as
well as the potential significance of the elitist MAROC-based classifier ensemble strategy,
was confirmed experimentally. The results reported in this chapter compare well with
those of existing systems, previously proposed in the literature, which also consider the
amateur skilled forgeries within Dolfing’s data set.

In the next chapter, we conclude this study by briefly discussing selected key issues.
Also presented is a selection of topics deemed both relevant and potentially beneficial to
the systems developed in this study, but considered as future work.



Chapter 7

Conclusion and Future Work

“The important thing is not to stop questioning.”
- Albert Einstein (1879–1955)

7.1 Conclusion

During the course of this study, we developed a set of eight continuous base classifiers.
Each of these classifiers was constructed by combining the efforts of a specific local feature
with a specific signature modelling technique. In addition, we developed a set of three
combined classifiers, each constructed by combining the efforts of an ensemble of base
classifiers by means of either score-based or decision-based fusion strategies.

As mentioned in Section 1.3, this study had two primary objectives. The first ob-
jective, namely the design and implementation of a novel feature extraction technique,
was completed successfully. The feature extraction technique proposed in this study
utilises existing local features in conjunction with a novel flexible grid-based signature
segmentation strategy. This flexible grid-based feature extraction technique was shown
to consistently outperform the traditional rigid grid-based feature extraction technique
found in the literature. The second objective, namely the design and implementation of
a robust combined classifier, was also completed successfully. We considered two existing
classifier fusion strategies, namely score averaging and the majority vote rule, as well as a
novel elitist MAROC-based classifier ensemble combination strategy. The MAROC-based
approach is an extension of the existing ROC-based combination strategy for classifier
pairs. Each of the combined classifiers was shown to outperform the top ranked base
classifier. Furthermore, we showed that a significant gain in proficiency is expected for
the MAROC combined classifier, subject to the construction of a classifier ensemble from
sufficiently independent base classifiers.

The set of novel combined classifiers developed in this study compare well with pre-
vious systems reported in the literature. This is an exciting prospect, since the MAROC
combined classifier was shown to perform sub-optimally. We may therefore realistically
expect to significantly improve upon the results reported in this study.
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7.2 Future work

During the course of this study, certain concepts were encountered that warrant further
investigation, as they are deemed potentially beneficial to the systems developed in this
study. These concepts are not included in this work, either due to being considered
outside the scope of this study, or simply due to time constraints. In this section, some
of these concepts are briefly discussed as a possible continuation of this study.

7.2.1 Adaptive grid segmentation

In Section 6.5.1 we verified experimentally the improvement in verification proficiency
gained by adopting the flexible grid-based feature extraction technique. The flexible
segmentation grids developed in this study, however, are subject to the requirement
that each grid cell boundary is dilated, if possible, to exactly the same extent. The
application-specific optimal flexible segmentation grid therefore needs to be obtained
experimentally, as shown in Section 6.3.2. The optimal implementation of this concept
of overlapping segmentation grid cells is therefore definitely worth investigating as part
of further research.

In particular, we are interested in the potential advantages obtainable by the de-
velopment of an intelligent, non-uniform adaptive segmentation grid. The property of
non-uniformity simply implies that the flexibility parameters associated with each indi-
vidual grid cell need not necessarily be comparable. The property of adaptivity implies
that the system will automatically determine each grid cell’s optimal flexibility, during
run-time, upon receiving an arbitrary signature image. This process of self-optimisation
should be based on the identification of a certain region of interest, as described by a spe-
cific property, perhaps analogous to the self-optimisation of the AMF-window discussed
in Section 3.2.

7.2.2 Conditionally independent classifier ensembles

In Section 6.5.2 we showed experimentally that a MAROC combined classifier, con-
structed from an ensemble of eight conditionally independent base classifiers, is predicted
to achieve AUC and EER measures on Dolfing’s optimisation set of 99.89% and 1.26%,
respectively. Such levels of verification proficiency are usually reserved for on-line sys-
tems. No predictions can sensibly be made on the evaluation set. As discussed in Section
5.3.2, this prediction remains valid only if the set of independent base classifiers each has
an individual performance comparable to the DTW and HMM base classifiers developed
in this study. Considering the base classifier performance reported in this study, this is
deemed a reasonably attainable goal.

It therefore definitely warrants further investigation to attempt the design and im-
plementation of such a conditionally independent classifier ensemble. The requirement
of independent classifier decisions may most likely be achieved by either considering a
fundamentally different set of features and/or signature modelling techniques. Poten-
tial features to investigate include the DRT, a multi-angle global projection feature, or
perhaps the Fourier boundary descriptor feature. Definite candidates for investigation
include the NN-based and SVM-based signature modelling techniques. In fact, the study
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by Justino et al. (2005) suggests that an SVM base classifier is likely to outperform an
otherwise similar HMM base classifier.

It is therefore considered quite possible to achieve the predicted results reported in
Section 6.5.2, which would constitute a most significant contribution to the current state
of the art.

7.2.3 The writer-independent approach

As mentioned in the previous section, we are very interested in investigating the potential
benefit, especially to the MAROC combined classifier developed in this study, by including
base classifiers utilising NNs and SVMs.

The inclusion of such discriminative classifiers, however, requires the availability of
skilled forgeries for model training. As this requirement is satisfied only by the set of
guinea pig writers, a writer-dependent verification strategy is considered infeasible for the
purposes of sensible model evaluation. By employing the writer-independent approach,
as discussed in Section 1.2.7, this impediment is circumvented, since no model retraining
is required prior to model evaluation.

Furthermore, since a single model is employed for all new clients, the use of writer-
independent base classifiers significantly reduces both the computational cost and the
memory requirements of the resulting classifier ensemble. This property therefore greatly
improves the economic viability of the resulting off-line signature verification system.
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Appendix A

Dynamic Time Warping: Key
Concepts

This appendix provides a detailed discussion on the DTW-algorithm, as used by the
DTW base classifiers developed in this study.

A.1 Algorithm

In order to obtain the DTW-based distance between a questioned vector xq and a reference
vector xk, a grid is constructed such that each node (i, j) relates component i of xq to
component j of xk. For each node, the distance

Dnode(i, j) = (xq(i)− xk(j))
2, 1 ≤ i, j ≤ d (A.1)

is computed, which is said to reflect the node-based cost associated with xq(i) and xk(j).
The optimal path is subsequently defined as the complete path

(i0, j0)(i1, j1) . . . (iK , jK) (A.2)

through the grid for which the total node-based cost

D
(compl)
node (i, j) =

K
∑

k=0

Dnode(ik, jk) (A.3)

is minimised. Several constraints are imposed on the solution space, in order to ensure
that the resulting optimal path is in fact a valid path.

Firstly, it is required that the optimal path is complete. In other words, for two
d-dimensional feature vectors xq and xk, xq(1) must always be related to xk(1), whilst
xq(d) must always be related to xk(d). This is achieved by the requirement

(i0, j0) = (1, 1), (A.4)

(iK , jK) = (d, d). (A.5)

It is not strictly required that xq and xk share the same dimension, as indicated by
Constraint A.5, although this is always the case for base classifiers developed in this
study.
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Furthermore, it is required that the optimal path be monotonically increasing, as
illustrated in Figure 4.2. A node (i, j) may therefore only be considered for inclusion
into the optimal path if it is preceded by the node (i − 1, j − 1), (i, j − 1) or (i − 1, j).
Consequently, it follows that

ik ≥ ik−1, k = 1, 2, . . . , K, (A.6)

jk ≥ jk−1, k = 1, 2, . . . , K. (A.7)

As a result, any node that fails to satisfy Constraints A.6 and A.7 does not form part
of a legitimate path and can therefore not form part of the optimal path. Finally, when
constructing the optimal path, it is required that

|jk − ik| ≤ Hvec, k = 0, 1, . . . , K. (A.8)

Since the bandwidth Hvec ∈ [0, d] may be chosen arbitrarily, Constraint A.8 is not con-
sidered rigid, although it does address two key aspects regarding the practicality of the
obtained solution. Firstly, it ensures that components with exceedingly different indices
are not related, which would not be sensible. Secondly, it limits the computational cost
associated with the DTW-algorithm. It should be clear that for feature vectors of a
very high dimension, constructing a complete cost grid could become computationally
exhaustive. Note that when Hvec = 0, the optimal path is restricted to the diagonal
i = j, thereby producing the Euclidean distance.

Before we discuss the DTW-based algorithm for obtaining the complete optimal path

and its associated complete optimal cost, it is necessary to define two key concepts. Let
D

(part)
node (i, j) denote the partial optimal path that terminates at node (i, j). Also, let
← (i, j) denote the optimal preceding node for node (i, j). A preceding node is deemed
optimal if the partial optimal path that passes through it and terminates at (i, j) min-
imises the partial optimal cost.

The complete procedure for finding the optimal path and corresponding DTW-based
distance by means of the DTW-algorithm can now be stated as follows:

• Initialisation:

D
(part)
node (1, 1) = Dnode(1, 1). (A.9)

• Recursion:

All nodes within the allotted bandwidth are considered in a left-to-right, bottom-
to-top fashion. For each node considered, ← (i, j) is computed as

C1 = D
(part)
node (i− 1, j − 1), (A.10)

C2 = D
(part)
node (i, j − 1), (A.11)

C3 = D
(part)
node (i− 1, j), (A.12)

← (i, j) = argmin{C1, C2, C3}. (A.13)

If the minimum value for Ci is shared by more than one of the preceding nodes,
← (i, j) is selected in the following order of preference: (i−1, j−1), then (i, j−1),

then (i− 1, j). Subsequently, D
(part)
node (i, j) is computed as

D
(part)
node (i, j) = Dnode(i, j) +D

(part)
node (← (i, j)). (A.14)
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• Path backtracking:

As ensured by Constraints A.4 and A.5, nodes (i0, j0) and (iK , jK) of the optimal
path are reserved for (1, 1) and (d, d), respectively. The remainder of the optimal
path may be obtained through backtracking from node (iK , jK) by iteratively letting

(ik, jk) =← (ik+1, jk+1). (A.15)

• Termination:

D
(compl)
node (xq,xk) = D

(part)
node (d, d). (A.16)



Appendix B

Hidden Markov Models: Key
Concepts

This appendix provides detailed discussions on fundamental theory surrounding the dis-
crete observation HMMs developed in this study. Throughout this appendix, the notation
established in Section 4.4.2 is used.

B.1 The three basic problems of HMMs

In order to apply a discrete observation HMM to any real-world application, three basic
problems need to be solved:

HMM Problem I: Model evaluation. Given a discrete observation sequence O =
{o1, o2, . . . , oT} and a model λ = (A,B, π), how do we efficiently compute P (O|λ), the
probability that O was generated by λ?

HMM Problem II: Finding the optimal state sequence. Given a discrete obser-
vation sequence O = {o1, o2, . . . , oT} and a model λ = (A,B, π), how do we determine
the state sequence Q∗ = {q∗1, q∗2, . . . , q∗T} that most probably generated O?

HMM Problem III: Model optimisation. Given a discrete observation sequence
O = {o1, o2, . . . , oT} and a model λ = (A,B, π), how do we adjust the model parameters,
thereby obtaining λ̄ = (Ā, B̄, π̄), such that P (O|λ̄) ≥ P (O|λ)?

The primary objective of HMM design is therefore to provide a set of robust solutions
to these three problems, which constitutes the foundation of any efficient HMM imple-
mentation. In Sections B.2 and B.3 we show how the Viterbi algorithm may be used to
provide efficient solutions to all three basic problems.
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B.2 The Viterbi algorithm

The Viterbi algorithm attempts to solve HMM Problems I and II by utilising dynamic
programming techniques to maximise P (Q|O, λ).

In order to determine the optimal state sequence Q∗ associated with the observation
sequence O = {o1, o2, . . . , oT}, the quantity

δt(i) = max
q1,q2,...,qt−1

[P (qt = si,O|λ)] (B.1)

is defined as the highest probability along a single path which accounts for the first t
observations and ends in state si. It follows by induction that

δt+1(j) = max
1≤i≤N

[δt(i)aij]bj(ot+1). (B.2)

Furthermore, the array ψt(j) is used to keep record of the argument which maximises
δt+1(j), for each t and j, thereby ensuring that the state sequence may be retrieved.

The complete procedure for finding the best state sequence by means of the Viterbi
algorithm can now be stated as follows:

• Initialisation:

δ1(i) = πibi(o1), 1 ≤ i ≤ N (B.3)

ψ1(i) = 0 (B.4)

• Recursion:

δt(j) = max
1≤i≤N

[δt−1(i)aij ]bj(ot),
2 ≤ t ≤ T

1 ≤ j ≤ N
(B.5)

ψt(j) = argmax
1≤i≤N

[δt−1(i)aij ],
2 ≤ t ≤ T

1 ≤ j ≤ N
(B.6)

• Termination:

P ∗ = max
1≤i≤N

[δT (i)] (B.7)

q∗T = argmax
1≤i≤N

[δT (i)] (B.8)

• Path backtracking:
q∗t = ψt+1(q

∗
t+1) (B.9)

Given the discrete observation sequence O = {o1, o2, . . . , oT}, the Viterbi algorithm con-
sequently produces its optimal state sequence Q∗ = {q∗1, q∗2, . . . , q∗T}, as well its probability
P ∗ = P (Q∗|λ), thereby providing solutions to HMM Problems II and I, respectively.
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B.3 Training

Each HMM constructed in this study represents a writer-dependent signature model. It
is therefore of critical importance that each such HMM is as representative as possible of
the sample signatures available for training. In this section, we discuss how the Viterbi
algorithm may be used to obtain an optimal configuration for each writer’s associated
HMM, thereby providing a solution to HMM Problem III.

B.3.1 Parameter optimisation

Apart from the initial state distribution π, which is permanently bound by the left-
right topology considered in this study, the set of HMM parameters may theoretically
be initialised arbitrarily, as they are to be reestimated during model training. It has
been shown, however, that the initial parameter estimates have a definite influence on
the accuracy of the optimised model obtained after reestimation. The importance of an
effective initialisation for λ is illustrated conceptually in Figure B.1.

P (O|λ̄1)

P (O|λ̄2)

P (O|λ̄3)

λ1 λ2 λ3λ̄1 λ̄2 λ̄3

Figure B.1: Conceptualisation of the observation sequence probability P (O|λi) as a function

of the model configuration λi. From this conceptualisation it is clear that the convergence of

P (O|λi), to a local or global maximum P (O|λ̄i), is based solely on the corresponding parameter

initialisation λi.

During model training, given an observation sequence O and model λ, the Viterbi al-
gorithm is used to obtain the optimal state sequence Q∗. The adjusted HMM parameters
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Ā and B̄ may subsequently be estimated by letting

āij =
number of transitions from state si to state sj in Q∗

number of times state si occurs in Q∗ , (B.10)

b̄j(k) =
number of times state sj emits symbol vk in Q∗

number of times state sj occurs in Q∗ , (B.11)

whilst π remains fixed, thereby enforcing the left-right topology of the associated HMM
model.

This process is repeated iteratively until convergence of the observation sequence
probability P (O|λ̄) is achieved. As mentioned earlier, there is no guarantee that the final
observed value for P (O|λ̄) represents a global maximum (see Figure B.1), reiterating the
vital importance of suitable initial estimates of A and B.

B.3.2 Multiple observation sequences

If one is to effectively reestimate the model parameters λ, a single observation sequence
is clearly insufficient. This is especially true in the case of left-right HMMs, where the
transient nature of the states within the model ensures that each state is associated with
a relatively small number of observations - not to mention the fact that certain states
are allowed to bypass their immediate successors during a transition. The use of multiple
observation sequences for model optimisation therefore becomes a definite necessity.

Consequently, certain minor modifications are made to the reestimation procedure.
We denote the training set of K observation sequences by

Ō = {O(1),O(2), . . . ,O(K)}, (B.12)

where O(k) = {o(k)
1 , o

(k)
2 , . . . , o

(k)
T } represents the kth sequence of T observations. Assuming

independence between each observation sequence, the modified reestimation procedure
entails adjusting the model parameters λ in order to maximise

P (Ō|λ) =

K
∏

k=1

P (O(k)|λ). (B.13)

B.3.3 Implementation issues

In order to accurately utilise the efforts of an HMM in a real-world application, certain
additional measures are required to avoid numerical anomalies. In this section, we discuss
two such measures, namely scaling and probability flooring, as proposed by Rabiner (1989)
and Fink (2008), respectively.

Scaling

In order to understand the necessity of a suitable scaling procedure, consider, for example,
the definition of Equation B.13. Each factor represents a quantity (usually significantly)
less than 1. Depending on the number of observation sequences incorporated, as well
as the length of each such sequence, the probability measure yielded by Equation B.13
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is generally expected to exceed the precision provided by modern computing systems,
resulting in numerical underflow.

In order to ensure optimal accuracy, it is therefore recommended to scale any com-
putation involving probabilities, thereby minimising loss of precision. The most popular
method for algorithmic scaling involves the use of logarithms. This method not only maps
particularly small values to sufficiently large ones, but also enables the use of summation
rather than multiplication.

Logarithmic scaling is easily incorporated into the Viterbi algorithm by introducing
the quantity

φt(i) = max
q1,q2,...,qt

[lnP (qt = si,O|λ)], (B.14)

followed by the modifications to the Viterbi algorithm described below:

• Initialisation:
φ1(i) = ln πi + ln bi(o1), 1 ≤ i ≤ N (B.15)

• Recursion:

φt(j) = max
1≤i≤N

[φt−1(i) + ln aij] + ln bj(ot),
2 ≤ t ≤ T

1 ≤ j ≤ N
(B.16)

• Termination:
lnP ∗ = max

1≤i≤N
[φT (i)] (B.17)

In addition, Equation B.13 is also modified, such that the maximisation objective function
becomes

lnP (Ō|λ) = ln

K
∏

k=1

P (O(k)|λ)

=
K

∑

k=1

lnP (O(k)|λ). (B.18)

Probability flooring

During model training, it is quite possible that certain states are not considered for
parameter reestimation. This leads to zero-valued probabilities being associated with
each unobserved event. As a result, any subsequent computations involving the model
would possess a diminished solution space. Furthermore, it is highly inadvisable to assume
the impossibility of a certain event, solely because it is granted zero probability by Viterbi
reestimation.

In order to address this issue, the concept of probability flooring is introduced, whereby
it is strictly required that any transitional or output probability remains greater than a
certain threshold pmin. This threshold value may be assigned arbitrarily, although it is
recommended that it be optimised within the context of the application.

It should remain clear, though, that any zero-valued probabilities introduced by the
topological constraints (see Section 4.4.3) are not subject to probability flooring. These
event impossibilities may not only be safely assumed, but are in fact essential in ensuring
a valid solution.



Appendix C

Haker’s Algorithm

Algorithm 1: Haker’s algorithm for combining two continuous classifiers CA and
CB in ROC-space. Let t+

A and t+
B have length J and K, respectively.

Data: t+
A,t+

B,f+
A ,f+

B

Result: T+
AB,F+

AB

for j = 1 to J do1

t+A ← t+
A(j);2

f+
A ← f+

A (j);3

for k = 1 to K do4

t+B ← t+
B(k);5

f+
B ← f+

B (k);6

MLE1 ← t+At
+
B ≥ f+

A f
+
B ;7

MLE2 ← t+A(1− t+B) ≥ f+
A (1− f+

B );8

MLE3 ← (1− t+A)t+B ≥ (1− f+
A )f+

B ;9

MLE4 ← (1− t+A)(1− t+B) ≥ (1− f+
A )(1− f+

B );10

if MLE1 & ¬MLE2 & ¬MLE3 & ¬MLE4 then11

T+
AB(j, k)← t+At

+
B;12

F+
AB(j, k)← f+

A f
+
B ;13

else if MLE1 & MLE2 & ¬MLE3 & ¬MLE4 then14

T+
AB(j, k)← t+A;15

F+
AB(j, k)← f+

A ;16

else if MLE1 & ¬MLE2 & MLE3 & ¬MLE4 then17

T+
AB(j, k)← t+B;18

F+
AB(j, k)← f+

B ;19

else if MLE1 & MLE2 & MLE3 & ¬MLE4 then20

T+
AB(j, k)← t+A + t+B − t+At+B;21

F+
AB(j, k)← f+

A + f+
B − f+

A f
+
B ;22

end23

end24

end25
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