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Abstract

In this thesis a novel and generic feature extraction protocol that is based on
the well-known standard discrete Radon transform (SDRT) is presented. The
SDRT is traditionally associated with computerised tomography and involves
the calculation of projection profiles of an image from a finite set of angles.
Although the SDRT has already been successfully employed for the purpose
of feature extraction, it is limited to the detection of straight lines.

The proposed feature extraction protocol is based on modifications to the
SDRT that facilitate the detection of not only straight lines, but also curved
lines (with various curvatures), as well as textural information. This is made
possible by first constructing a novel appropriately normalised multiresolution
polar transform (MPT) of the image in question. The origin of said MPT
may be adjusted according to the type of features targeted. The SDRT, or
the novel modified discrete Radon transform (MDRT) conceptualised in this
thesis, is subsequently applied to the MPT.

The extraction of textural information based on different textural period-
icities is facilitated by considering different projection angles associated with
the MDRT, while the extraction of textural information based on different
textural orientations is facilitated by specifying different origins for the MPT.
The extraction of information pertaining to curved lines is made possible by
specifying origins for the MPT that are located at different distances from the
edge of the image in question – the SDRT is subsequently applied to a given
MPT from a specific angle of 90◦.

An existing system that only employs SDRT-based features constitutes a
benchmark. Two novel texture-based systems, that target different textural
periodicities and orientations respectively, are developed. A novel system,
that constitutes a generalisation of the SDRT-based benchmark, and is geared
towards the detection of different curved lines, is also developed.

The proficiency of the proposed systems is gauged by considering a data
set that contains authentic handwritten signature images and skilled forgeries
associated with 51 writers. All of the proposed systems outperform the SDRT-
based benchmark. The improvement in proficiency associated with each indi-
vidual texture-based system is statistically significant. The proficiency of the
proposed systems also compares favourably with that of existing state-of-the-
art systems within the context of offline signature verification.
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Uittreksel

In hierdie tesis word ‘n nuwe en generiese kenmerk-onttrekkingsprotokol, wat
op die bekende gestandaardiseerde diskrete Radon-transformasie (SDRT) ge-
baseer is, voorgehou. Die SDRT word tradisioneel met rekenaarmatige tomo-
grafie geassosieer, en behels die berekening van projeksie-profiele van ‘n beeld
vanuit ‘n eindige versameling hoeke. Alhoewel die SDRT reeds vir kenmerk-
onttrekking aangewend is, is dit beperk tot die opsporing van reguit lyne.

Die voorgestelde kenmerk-onttrekkingsprotokol is op aanpassings van die
SDRT gebaseer, en fasiliteer die opsporing van benewens reguit lyne, ook krom
lyne (met verskeie krommings), asook tekstuur -inligting. Dit word bewerkstel-
lig deur eers ‘n nuwe korrek-genormaliseerde multiresolusie-pooltransformasie
(MPT) op die betrokke beeld toe te pas. Die oorsprong van so ‘n MPT kan, na
gelang van die tipe kenmerke wat geteiken word, aangepas word. Die SDRT,
of die nuwe aangepaste diskrete Radon-transformasie (MDRT) soos gekonsep-
tualiseer in hierdie tesis, word vervolgens op die MPT toegepas.

Die onttrekking van tekstuur-inligting op grond van verskillende tekstuur-
periodisiteite word gefasiliteer deur verskillende projeksie-hoeke geassosieer
met die MDRT te beskou, terwyl die onttrekking van tekstuur-inligting op
grond van verskillende tekstuur-oriëntasies moontlik gemaak word deur ver-
skillende oorspronge vir die MPT te spesifiseer. Die onttrekking van inligting
rakende krom lyne word gefasiliteer deur oorspronge op verskillende afstande
vanaf die rand van die betrokke beeld vir die MPT te spesifiseer – die SDRT
word vervolgens op ‘n gegewe MPT vanaf ‘n spesifieke hoek van 90◦ toegepas.

‘nMaatstaf word gestel deur ’n bestaande stelsel wat slegs SDRT-gebaseerde
kenmerke gebruik. Twee nuwe tekstuur-gebaseerde stelsels, wat onderskeidelik
verskillende tekstuur-periodisiteite en –oriëntasies teiken, word ontwikkel. ‘n
Nuwe stelsel, wat gebaseer is op ‘n veralgemening van die SDRT-gebaseerde
maatstaf, en gerig is op die opsporing van verskillende krom lyne, word ook
ontwikkel.

Die vaardigheid van die voorgestelde stelsels word afgeskat deur ‘n datastel
te beskou wat statiese handtekeninge en hoë-kwaliteit vervalsings, geassosi-
eer met 51 skrywers, bevat. Al die voorgestelde stelsels vaar beter as die
SDRT-gebaseerde maatstaf. Die vaardigheidsverbetering geassosieer met elke
individuele tekstuur-gebaseerde stelsel is statisties beduidend. Die vaardigheid
van die voorgestelde stelsels vergelyk ook goed met dié van bestaande stand-
van-die-kuns-stelsels binne die konteks van statiese handtekeningverifikasie.
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Chapter 1

Introduction

1.1 Background and motivation
Feature extraction through textural pattern and curved line detection has been
implemented successfully and independently on various occasions. The profi-
ciency of generic object recognition systems may therefore be improved through
enhanced feature detection based on the aforementioned approach. Research
areas that may particularly benefit from these enhancements include (but are
not limited to) vehicle-related object detection, health-related object detection
and biometric authentication.

Vehicle-related object detection. A recent increase in security concerns
involving vehicles has led to an increased demand for effective vehicle-related
object detection strategies. Vehicle-related object detection includes scenarios
in which vehicles are detected, as well as scenarios in which the vehicle is used
as a tool for detection. Whenever a vehicle that exhibits suspicious behaviour
is detected, the appropriate authorities may be notified. Driver safety may
also be enhanced through the detection of road signs and road boundaries.
The survey by Sivaraman and Trivedi (2013) highlights a number of research
projects that focus on the detection of vehicles and analyse driver behaviour.
Zhang and Zheng (2010) employ texture-based features for the purpose of vehi-
cle detection. Yu and Jain (1997) on the other hand utilise Hough transforms
for the purpose of detecting straight lines that coincide with lane boundaries.
It should therefore be clear that the improved detection of textural patterns
and curved lines within an image will probably enhance the proficiency of
vehicle-related object detection algorithms.

Health-related object detection. Medical image analysis based on the
detection of textural patterns and curved lines may provide a means of de-
tecting medical anomalies at an early stage, which could result in lives being
saved. In particular, line and texture detection strategies may aid in establish-
ing whether components within a medical image should be deemed normal or
abnormal. In addition to this, the aforementioned strategies may be utilised

1
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to render certain medical practices more efficient or aid medical staff in their
work. Examples of medical systems that rely on line detection include those
proposed by Nguyen et al. (2013) and Wu et al. (2013). Algorithms that in-
volve texture detection within the context of health sciences are proposed by
Castellano et al. (2004) and Nanni et al. (2010). Improved texture and line
detection within medical images may therefore benefit the health industry.

Biometric authentication. Numerous existing biometric authentication
systems rely on either curved line or texture detection. Wu and Ye (2009)
employ the standard discrete Radon transform (SDRT) for the purpose of de-
tecting straight lines in finger vein patterns within the context of biometric
authentication. Coetzer et al. (2004), Jayadevan et al. (2009) and Panton
and Coetzer (2010) utilise the SDRT for the purpose of detecting straight
lines in static handwritten signature images, thereby facilitating successful of-
fline signature verification. Wei et al. (2008) and Nikam and Agarwal (2008)
successfully employ textural information for the purpose of iris and finger-
print detection, respectively. The value of curved line and texture detection is
therefore evident within the context of biometric authentication.

The increased demand for improved feature extraction algorithms through
the detection of curved lines and textural patterns is clear. The aim of this
thesis is therefore to develop novel generic systems for this purpose.

1.2 Key concepts

1.2.1 Texture detection

Objects within static images may be described by either their external shape or
their internal properties. In many scenarios the texture of an object constitutes
a characteristic internal property that is well suited for distinguishing it from
other objects. The texture of an object may be described by quantifying its
coarseness, periodicity, orientation, uniformity, etc. Textural information may
furthermore be extracted from images in either a local or a global manner.
Local textural information pertains to fine detail within an image, typically
associated with a small subimage (retina). Global textural information, on the
other hand, is typically extracted from an image in its entirety, as is proposed
in this thesis. The SDRT has been used on previous occasions for the purpose
of texture detection based on textural orientation (Hai-peng et al., 2005), as
well as for texture analysis based on textural periodicity (Jafari-Khouzani and
Soltanian-Zadeh, 2005). In this thesis the SDRT is employed for the purpose of
extracting textural information based on both textural orientation and textural
periodicity.
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1.2.2 Curved line detection

The feature extraction protocol proposed in this thesis is based on the SDRT
and modifications thereof. The SDRT of an input image is obtained by cal-
culating projection profiles of said image from a number of equally spaced
projection angles in the interval θ ∈ [0◦, 180◦). A prominent peak within a
specific projection profile is indicative of a prominent straight line within the
input image. The SDRT is therefore geared towards the detection of straight
lines within static images. The SDRT is discussed in more detail in Section 3.2.

Although many systems have been proposed for the purpose of curved line
detection, the Hough transform (HT) and adaptations thereof remain the most
well-known and widely used. The linear HT is similar to the SDRT, which is
employed in this thesis, in the sense that both transforms are geared towards
the detection of straight lines within an image.

The linear HT differs from the SDRT in the sense that it targets straight
lines in parameterised form, y = ax+ b. A predefined number of accumulator
cells in the ab (parameter) space is initially set to zero. For each allotted value
of the gradient a, each set of pixel coordinates (xi, yi) in Cartesian space is
iteratively considered, in which case the y-intercept b is estimated. During
each iteration, the value of an accumulator cell (a, b) is incremented. The
eventual value of a certain accumulator cell (a, b) is therefore indicative of the
number of one-valued pixels in the image that approximately lie on the line
y = ax+ b, assuming that said image is binary.

It is assumed that zero-valued pixels constitute the background, while one-
valued pixels form part of objects within a binary image. It is therefore im-
portant to note that the HT is only defined for binary images, while the SDRT
may be applied to either binary or grey-scale images. The linear HT is also
not invertible as is the case for the SDRT.

Since a ∈ (−∞,∞) and b ∈ (−∞,∞), the normal representation of a
straight line ρ = xcosγ + ysinγ is often used within the context of the lin-
ear HT in order to ensure a finite parameter space. Said parameter space is
therefore defined for γ ∈ [−90◦, 90◦] and ρ ∈ [−H,H], where H represents
the maximum distance between opposite corners of the image. The reader is
referred to Gonzales and Woods (2010) for a more detailed description of the
aforementioned representation of straight lines.

Although the HT may also detect more complex parameterised curves (typ-
ically conic sections) by considering higher dimensional parameter spaces, such
strategies are both inefficient and limited to the parameterised curves in ques-
tion.

Due to the above-mentioned limitations, a novel strategy for detecting
curved lines, which involves appropriate modifications to the SDRT, is de-
veloped in this thesis (Section 3.5).
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1.2.3 Biometric authentication

The utilisation of biometric data is becoming increasingly popular within the
context of identity authentication. This is due to the fact that it is deemed
to be more secure than knowledge-based or possession-based data which is
typically easier to gain access to and may be easily replicated.

Biometric data is categorised into physiological and behavioural data. The
former includes fingerprints, retinal patterns, irises, hand-veins, etc. On the
other hand, identity authentication based on behavioural biometrics includes
voice recognition, handwritten signature verification, gait recognition, keystroke
recognition, etc. Behavioural biometrics are employed, in the form of offline
handwritten signatures, to gauge the proficiency of the systems proposed in
this thesis. The reader is referred to Wang and Geng (2009) for an in-depth
discussion on behavioural biometrics.

Handwritten signatures may be categorised into offline (static) signatures
and online signatures. Offline signatures are typically extracted from legal doc-
uments, bank cheques or credit card slips, while online signatures are typically
acquired dynamically through a digitising device like a tablet. The systems
proposed in this thesis are implemented on an ideal (noiseless) offline signa-
ture database (see Section 5.2) for the purpose of detecting skilled forgeries. A
skilled forgery is produced when the forger has access to one or more authentic
samples of the victim’s signature and/or witnessed the signing event.

1.2.4 Performance metrics

Performance metrics typically employed for verification systems are utilised to
gauge the proficiency of the systems proposed in this thesis. Although sim-
ilar performance metrics may be employed within the context of recognition
systems, it is important to note that recognition and verification systems are
conceptually different. A recognition system aims to determine to which class
(among a number of classes) a questioned sample belongs to. A verification
system, on the other hand, simply aims to determine whether or not a ques-
tioned sample belongs to a claimed class.

Within the context of offline signature verification, the systems developed
in this thesis match a questioned sample (signature) to a model of the claimed
writer. The resulting distance is subsequently normalised (on a writer-specific
basis) and converted into a normalised score. A global threshold τ is applied
to all scores (regardless of the claimed writer) so that a false acceptance rate
(FAR) and a false rejection rate (FRR) are obtained. These performance
metrics are estimated as follows,

FAR =
Number of forgeries accepted
Total number of forgeries

, (1.1)

FRR =
Number of authentic samples rejected
Total number of authentic samples

. (1.2)
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During experimentation a number of independent trials are conducted. For
each trial, the data set is partitioned into an optimisation set and an evaluation
set as explained in Section 5.4. These sets are comprised of different writers.
The optimisation writers are first used to obtain the global threshold τ that
results in an equal error rate (EER) as explained in Section 4.4. The EER is
achieved when the FAR equals the FRR (see Figure 1.1). The aforementioned
threshold is subsequently applied to questioned samples in the evaluation set,
after which an FAR and FRR are reported for the specific evaluation set. Said
FAR and FRR are not expected to differ substantially for a specific classifier.
The average of these two rates is referred to as the average error rate (AER)
which quantifies the proficiency of said classifier based on the trial in question.
A sufficient number of trials are conducted in order to ensure statistically sig-

Figure 1.1: Conceptualisation of the EER, which determines the selection of an
appropriate global threshold based on the optimisation set for a specific trial.

nificant results, as explained in Section 5.4. System performance is quantified
by the mean AER across all trials. Said performance metric is denoted by
µAER.

1.2.5 Local and global features

Features extracted from a questioned image may be categorised into local and
global features. A local feature quantifies a localised attribute of an object
like an individual pen stroke within a handwritten signature or an individual
segment within an object boundary. On the other hand, global features de-
scribe an image, or an object within an image, in its entirety. Various existing
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systems, including the system proposed by Panton and Coetzer (2010) employ
a combination of both local and global features. The systems proposed in this
thesis however focus exclusively on the extraction of global features.

1.2.6 Classifier ensembles and combination

A classifier ensemble constitutes an assembly of base classifiers (often associ-
ated with different feature sets) that consider similar information. In order
to improve upon the proficiency of the individual base classifiers within an
ensemble, said base classifiers may be fused into a combined classifier. The
aforementioned fusion may be achieved in three ways. The first approach in-
volves score-level fusion, where the scores associated with the individual base
classifiers are fused into a single score. The systems proposed in this thesis
consider amongst other things score-level fusion through score averaging (see
Section 4.6). The second approach to combining the individual base classifiers
within an ensemble involves decision-level fusion. The systems proposed in
this thesis consider amongst other things decision-level fusion through major-
ity voting (see Section 4.6). Feature level fusion presents a third approach, but
is not considered in this thesis. The aforementioned fusion strategy typically
combines various features before a score is calculated.

1.3 Scope and objectives
The standard discrete Radon transform (SDRT) has been successfully imple-
mented for the purpose of object recognition on several previous occasions
(Coetzer et al., 2004; Wang et al., 2007; Hjouj and Kammler, 2008; Jayadevan
et al., 2009; Panton and Coetzer, 2010; Swanepoel, 2015). It is however limited
in the sense that it is only capable of detecting straight lines within images,
while a typical object within an image also contains curved lines.

The scope of this work is limited to an investigation into novel alternative
feature extraction strategies for the purpose of object recognition. Said strate-
gies involve modifications to the SDRT for the purpose of detecting curved
lines and textural information within an image.

Feature matching is achieved through a dynamic time warping (DTW) al-
gorithm. It is assumed that a limited number of reference samples are available
for training purposes. An investigation into the training of appropriate statis-
tical models, like probabilistic graphical models, as an alternative to template
matching, is therefore not conducted in this thesis since it is deemed to be
outside the scope of this work.

The novel feature extraction techniques conceptualised in this thesis are
generic in the sense that it is reasonable to presume that they will be of
value within any authentication scenario where objects (or their boundaries)
are characterised by distinct prominent curved lines. The proficiency of the
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systems proposed in this thesis is however evaluated by gauging their ability
to detect skilled forgeries within the context of offline signature verification.
The data set considered contains ideal (noiseless) handwritten signatures with
a fixed pen-stroke width. An investigation into appropriate pre-processing
techniques that may involve noise removal and pen-stroke width normalisation
is therefore not conducted in this thesis since it is deemed to be outside the
scope of this work. In this thesis we therefore aim to:

(1) Adapt the SDRT in such a way that not only straight lines, but also
curved lines with a wide range of curvatures may be detected;

(2) Adapt the SDRT in such a way that the intrinsic textural information
(based either on periodicity or orientation) associated with an object
within an image may be detected;

(3) Demonstrate that the combined classifiers that utilise the features ex-
tracted in (1) and (2) outperform an existing benchmark classifier that
only utilises SDRT-based features;

(4) Demonstrate that a specific base classifier obtained in (1) and (2) may
be more adept at detecting objects belonging to a specific class (writer),
which opens up the possibility of successful dynamic classifier selection
and/or dynamic weighted score fusion in future research.

1.4 System design
In this section a concise overview of the systems proposed in this thesis is
provided. Said systems are conceptualised in Figure 1.2.

1.4.1 Data

The experimental data constitutes handwritten signatures that were originally
captured online by Hans Dolfing for his PhD thesis (Dolfing, 1998). These dy-
namic signatures were subsequently converted by Coetzer et al. (2004) into
ideal (noiseless) static signature images with a fixed pen-stroke width. The
aforementioned data set contains authentic signature samples and skilled forg-
eries from 51 different writers and is discussed in detail in Section 5.2. Five
authentic reference samples constitute a template for a specific class (writer).

1.4.2 Feature extraction

A feature set that is based on the SDRT is first extracted from each input
image according to the protocol proposed by Coetzer et al. (2004). In this way
a benchmark system that is geared towards the detection of straight lines is
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Figure 1.2: A conceptualisation of the systems proposed in this thesis.

obtained. The first “group” of feature sets therefore constitutes a single feature
set based on the SDRT.

In order to facilitate the feature extraction protocols proposed in this the-
sis, appropriately normalised multiresolution polar transforms (MPT) are first
obtained (Section 3.3). The origins of the MPTs are specified according to the
type of features that are targeted for extraction.

Texture detection. In order to extract textural information, an MPT is
applied to a composite image that contains the original input image, as well
as appropriately appended reflections thereof. When the SDRT is applied to
said MPT, each projection beam (associated with the SDRT) coincides with a
spiral in Cartesian space. A spiral within the aforementioned composite image
coincides with a shark-fin shaped pattern in the original (input) image which
is well suited for extracting textural information.

To ensure that spirals are not limited to a single revolution, a modified
discrete Radon transform (MDRT) is proposed. Said MDRT, constitutes the
application of the SDRT to a periodical continuation of the normalised MPT
(see Section 3.4.3). Various textural orientations may be considered by speci-
fying different origins for the MPT. This concept is explained in Section 3.4.4.
The second group of feature sets therefore contain textural information based
on specific textural periodicities. Furthermore, the third group of feature sets
contain textural information based on specific textural orientations.

Curved line detection. The SDRT is finally applied to a normalised
MPT from a projection angle of 90◦. This facilitates the detection of concen-
tric circles in Cartesian space. The range of curvatures associated with the
aforementioned concentric circles may be adjusted. This is achieved through
specifying that the origin of the MPT is located at a certain distance from the
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edge of the input image as explained in Section 3.5. The fourth and final group
of extracted feature sets therefore contain information pertaining to concentric
curved lines with a specific range of curvatures.

1.4.3 Feature normalisation

Since the extracted feature vectors may differ substantially simply due to vari-
ations in scale or translation, appropriate feature vector normalisation is re-
quired. Therefore, once the feature vectors are extracted they are subsequently
rendered scale and translation invariant. The feature vector normalisation
protocol and the reason for not enforcing rotation invariance are discussed in
Section 3.6.

1.4.4 Feature matching

In order to quantify the difference between the corresponding normalised fea-
ture vectors associated with a specific feature set and extracted from two dif-
ferent samples, a DTW-based matching algorithm is employed. For a specific
feature set, the average of the DTW-based distances between the individual
feature vectors associated with a questioned sample and the corresponding fea-
ture vectors associated with a number of authentic reference samples is first
calculated (see Section 4.2). The above-mentioned raw distance is subsequently
normalised on a class-specific (writer-specific) basis through a strategy that is
similar to the well-known z-score as explained in Section 4.3. Said normalised
distance is subsequently converted into a normalised score. Feature-specific
score normalisation is not conducted since the feature vectors associated with
a specific group of feature sets are already appropriately normalised through
the strategy touched upon in Section 1.4.3.

1.4.5 Classification

A number of independent trials are conducted. For each trial a global threshold
across all classes (writers) is determined by considering an optimisation set,
after which said threshold is applied to an evaluation set. The aforementioned
protocol was briefly outlined in Section 1.2.4. A questioned sample is accepted
as authentic by a specific classifier when its associated score is larger than
or equal to the global threshold. It is otherwise rejected as fraudulent. The
experimental protocol is detailed in Section 5.4.

1.4.6 Ensemble construction and classifier combination

Four classifiers ensembles are constructed by assembling base classifiers (as-
sociated with specific feature sets) that consider similar information. Each of
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these ensembles correspond to a specific group of feature sets as outlined in
Section 1.4.2.

The first ensemble EI contains the benchmark SDRT-based classifier. The
second and third ensembles, EII and EIII, contain the classifiers that detect
textural information based on textural periodicity and orientation, respec-
tively. The fourth and final ensemble EIV contains the classifiers that extract
information pertaining to concentric curved lines. The construction of the
aforementioned classifier ensembles is described in detail in Section 4.5.

The base classifiers within a specific ensemble may be combined through
score averaging or majority voting as discussed in Section 4.6. The classifier
ensembles constructed in this thesis are conceptualised in Figure 1.3.

Figure 1.3: The four classifier ensembles constructed in this thesis.

1.5 Abbreviated results
The proficiency of the generic systems developed in this thesis is estimated
by considering a data set that contains authentic handwritten signatures and
skilled forgeries associated with 51 writers.

Recall that ensemble EI constitutes the single SDRT-based benchmark clas-
sifier. Ensemble EII contains a number of base classifiers that extract textural
information based on different textural periodicities, while ensemble EIII is
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comprised of base classifiers that extract textural information based on differ-
ent textural orientations. Finally, ensemble EIV contains base classifiers that
extract information pertaining to curved lines with different curvatures.

Majority voting. When the respective base classifiers within ensembles
EII, EIII and EIV are combined through majority voting, each of the combined
classifiers are more proficient than the SDRT-based benchmark system (EI).
The relevant results are presented in Table 1.1. Note that the combined clas-
sifiers associated with ensembles EII, EIII and EIV show relative improvements
in proficiency over the SDRT-based benchmark system (EI) of 35.86%, 28.29%
and 11.67% respectively. It is demonstrated in Section 5.5.4 that said improve-
ment in proficiency is statistically significant within the context of ensembles
EII and EIII.

Table 1.1: Results for classifier combination through majority voting. The results
that constitute a statistically significant improvement in proficiency over the SDRT-
based benchmark system (EI) are depicted in boldface.

Ensemble µAER(%)

EI 9.51

EII 6.10

EIII 6.82

EIV 8.40

Score averaging. When the respective base classifiers within ensembles
EII, EIII and EIV are combined through score averaging, all of the combined
classifiers, except one, are more proficient than the SDRT-based benchmark
system (EI). The relevant results are presented in Table 1.2. Note that the
combined classifiers associated with ensembles EII and EIII show relative im-
provements in proficiency over the benchmark SDRT-based system (EI) of
13.56% and 11.78% respectively.

Note that, within the context of ensembles EII, EIII and EIV, the combined
classifiers that employ majority voting are consistently more proficient than
their counterparts that employ score averaging.

The proficiency of the systems developed in this thesis is placed into per-
spective by comparing it to a number of existing systems in Section 5.5.3.

1.6 Contributions
Recall that the main objective of this study is to develop novel feature extrac-
tion strategies that are based on, and improve upon, existing feature extraction
techniques. Within this context, the contributions of this thesis are as follows:
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Table 1.2: Results for classifier combination through score averaging.

Ensemble µAER(%)

EI 9.51

EII 8.22

EIII 8.39

EIV 10.14

The facilitation of novel and improved feature extraction through
the construction of appropriately normalised and appropriately cen-
tred multiresolution polar transforms (MPTs). Traditionally the stan-
dard discrete Radon transform (SDRT) has been employed for the purpose
of feature extraction within the context of detecting prominent straight lines
in an image. In these scenarios the SDRT is applied directly to the image in
question. In this thesis it is proposed that an appropriately normalised and ap-
propriately centred MPT of the original image is first constructed. The SDRT
or a modified discrete Radon transform (MDRT) is subsequently applied to
the MPT. This facilitates the detection of various curved lines, as well as the
extraction of textural information associated with spirals in the original im-
age. In this thesis it is clearly demonstrated that the above-mentioned protocol
facilitates the extraction of richer features than those associated with the tra-
ditional implementation of the SDRT. It is also demonstrated that classifiers
based on these novel features outperform a traditional SDRT-based classifier.
This superiority is often statistically significant. To the best of our knowledge,
the proposed protocol for appropriately normalising and centring an MPT for
the purpose of extracting features based on the detection of curved lines and
textural information is novel.

A novel protocol that facilitates the detection of textural informa-
tion. In this thesis a novel strategy for detecting textural information within
an input image based on either textural periodicity of textural orientation
is proposed. This is made possible by applying the MDRT to appropriately
normalised and appropriately centred MPTs. Although the proficiency of the
proposed texture detection protocol is clearly demonstrated by considering a
data set containing binary (signature) images, the proposed protocol should
be equally applicable to grey-scale images.

A novel protocol that facilitates the detection of curved lines. In
this thesis a novel strategy for detecting curved lines within an input image is
proposed. This is made possible by applying the SDRT from an angle of 90◦

to appropriately normalised and appropriately centred MPTs. This provides
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a valuable alternative to the computationally complex Hough transform (HT)
that detects curved lines (mostly conic sections) within a high dimensional
parameter space. The HT is also restricted in the sense that it is only able
to detect curved lines within binary images, while the proposed protocol is not.

Proficient off-line signature verification. It is clearly demonstrated that
the proficiency of the systems developed in thesis compares favourably to that
of existing state-of-the-art systems within the context of writer-dependent of-
fline signature verification. The proposed feature extraction protocol is how-
ever generic, since said protocol is expected to be proficient within the context
of other authentication scenarios as well, as long as the objects in question (or
their boundaries) are characterised by distinct prominent curved lines.

Avenues for future research. It is demonstrated that an investigation into
more sophisticated classifier fusion strategies as part of future research is likely
to result in a further improvement in system proficiency. The proposed fea-
ture extraction protocol may also form part of a system that trains appropriate
generative or discriminative statistical models for classification purposes.

1.7 Thesis outline
The remainder of this thesis is structured as follows:

Chapter 2: Literature study. The systems proposed in this thesis are
placed into perspective by comparing the aforementioned systems to existing
systems that apply similar research principles. Existing research on the util-
isation of the SDRT for feature extraction is discussed. Existing research on
texture-based object recognition and generic curve detection is also investi-
gated.

Chapter 3: Feature extraction. Three feature extraction protocols, as-
sociated with four distinct groups of feature sets, are discussed. The first
protocol pertains to the benchmark SDRT-based system. The second protocol
involves the application of an MDRT to a normalised MPT. The third protocol
involves the application of the SDRT from a specific projection angle of 90◦

to a normalised MPT. An appropriate feature vector normalisation strategy is
finally presented.

Chapter 4: Feature matching, threshold selection and classifier en-
sembles. A feature matching protocol that is based on a DTW-based distance
measure is described. Score normalisation and threshold selection strategies
are also presented. The construction of classifier ensembles and the combina-
tion of the base classifiers within an ensemble are finally explained.



CHAPTER 1. INTRODUCTION 14

Chapter 5: Experiments. The offline signature data that is considered
for experimental purposes is first discussed, after which the system parame-
ters are specified. The experimental protocol is subsequently explained and
the experimental results are finally presented. The proficiency of the proposed
systems is placed into perspective through a comparison with relevant existing
systems. The protocol for statistical significance testing is also presented.

Chapter 6: Conclusion and future work. The traits associated with
the systems proposed in this thesis are revisited and assessed in hindsight. As
a continuation of this study, possible future research that may improve upon
the proficiency of the systems proposed in this study is presented and analysed.



Chapter 2

Literature study

2.1 Introduction
It is infeasible to directly compare the specifications and proficiency of the
novel systems proposed in this thesis (in their entirety) to those of exist-
ing systems. This is due to the fact that the proposed systems employ a
unique combination of feature extraction and experimental evaluation proto-
cols. However, the relevance of this research may be placed into perspective by
investigating previous work that was motivated by similar objectives and/or
employed similar protocols. We therefore opt to investigate existing research as
follows: In Section 2.2 we discuss existing research that employs the standard
discrete Radon transform (SDRT) for the purpose of feature extraction. In
Section 2.3 we investigate existing research pertaining to texture-based object
recognition. Finally, in Section 2.4 we investigate existing research pertaining
to the detection of curved lines in generic images.

2.2 SDRT for feature extraction
The SDRT constitutes an integration transform that may be used for the
purpose of feature extraction for various applications. Recall that the SDRT
calculates projection profiles of the original image from a predefined set of
equally distributed angles. When the projection profiles are packed into the
columns of a matrix, said matrix is often referred to as a sinogram. High-
intensity values within a sinogram are indicative of the presence of straight lines
in the original image. In addition to feature extraction, the SDRT may also
be used to simulate X-rays within the context of CAT scans and is invertible
through strategies like filtered back projection. In this thesis the SDRT is
applied to a multiresolution polar transform (MPT) both directly, for the
purpose of extracting curved lines from generic images, and also as part of
a more complex protocol for the purpose of texture-based recognition. We
therefore opt to investigate existing research that is based on the utilisation of
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the SDRT for the purpose of feature extraction within the context of generic
applications (see Section 2.2.1) and for the specific purpose of offline signature
verification (see Section 2.2.2).

2.2.1 Generic applications

Multimedia fingerprinting. Seo et al. (2004) exploit the scale, translation
and rotational properties of the SDRT for the purpose of feature extraction
within the context of multimedia fingerprinting, specifically for images. The
authors note that cryptographic hash functions are sensitive to the manipu-
lation of images. In order to guarantee a more robust system, they propose
that multimedia fingerprinting is employed instead. The authors investigate
various manipulations of 1000 images and report false rejection rates between
0.00% and 4.90%.

Facial recognition. Vankayalapati and Kyamakya (2009) employ the
SDRT and the wavelet transform for the purpose of facial recognition. These
two feature extraction techniques are first employed in isolation and then com-
bined. Finally, each of these feature extraction techniques is combined with
a technique based on linear discriminant analysis (LDA). The results for the
aforementioned systems are then compared to the respective recognition rates
obtained for systems based exclusively on LDA and principal component analy-
sis (PCA). The authors report that the combination of the SDRT and wavelet
transform outperforms both LDA and PCA. The reported recognition rates
range between 97% and 74% (for 40 to 400 front facing samples) in the case
of LDA and between 88% and 49% (for 40 to 400 front facing samples) in the
case of PCA. When implemented on the same data, the combination of the
SDRT and wavelet transform achieves recognition rates that range between
100% and 91%.

Iris recognition. Kumar et al. (2012) use the SDRT to extract local fea-
tures for automated iris recognition. The authors compare the proficiency of
the SDRT for feature extraction to that of a one-dimensional log-Gabor filter
and a monogenic log-Gabor filter. It is reported that the SDRT outperforms
the aforementioned techniques. Their best results for the SDRT-based ap-
proach are reported for the CASIA V4 database (that is a recognition rate of
90.43%) and their worst results are reported for the FRGC database (that is
a recognition rate of 33.20%).

2.2.2 Offline signature verification

Signature verification has been researched extensively due to its significance
within the context of biometric identification. In order to gain a broad per-
spective on the various protocols and data sets employed by recent research
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in offline signature verification, the reader is referred to the following surveys:
Hou et al. (2004), Impedovo and Pirlo (2008), Al-Omari et al. (2011), Yadav
et al. (2013), Khan and Dhole (2014), and Hafemann et al. (2015).

Since static signature images are employed for gauging the proficiency of
the generic systems proposed in this thesis, we elaborate on recently proposed
protocols for detecting skilled forgeries within the context of offline signature
verification. These protocols include the utilisation of dynamic time warping
(DTW) algorithms, the construction of hidden Markov models (HMMs) and
the use of support vector machines (SVMs). A skilled forgery is produced
when the forger has access to one or more authentic samples of the targeted
writer’s signature and sufficient time to practice imitating it.

It is important to note that no single standard international database cur-
rently exists and that various different databases have been employed for gaug-
ing the proficiency of existing systems.

The signatures within the data set considered for our study were origi-
nally captured online by Hans Dolfing for his PhD thesis (Dolfing, 1998). The
pen-tip coordinates of these dynamic signatures were subsequently used to
construct static signature images that contain no noise and have a fixed stroke
width of five pixels. Said data set is therefore ideal and is subsequently re-
ferred to as Dolfing’s data set. Since this data set is not frequently employed
for the purpose of offline signature verification, relatively few studies exist to
which our results may be directly compared. We do however opt to detail the
results of existing research that employs similar modelling techniques and sim-
ilar experimental protocols to those employed in this study. This may provide
a general indication of what may be expected in terms of system proficiency.

Global features modelled by DTW-based templates and ring-
structured HMMs. Offline signature verification may be achieved, as pro-
posed in Coetzer et al. (2004) and Coetzer (2005), through first calculating
the SDRT of each original signature image. A DTW-based distance measure
may then be used to quantify the dissimilarity between corresponding projec-
tion profiles. Alternatively, the projection profiles associated with authentic
signatures belonging to a specific writer may be used to train an appropriate
HMM. The aforementioned HMM has a ring topology and one state skip and
is constructed in such a way that the probability of entering the HMM at a
specific state is equal to the probability of entering the HMM at any other
state. The rationale behind this topology is to ensure rotational invariance.
The so-called Stellenbosch data set and Dolfing’s data set are employed for
experimentation purposes. Dolfing’s data set, that is the same data set em-
ployed in our study, consists of 60 skilled forgeries, 15 authentic test samples
and 15 authentic training samples per writer, from a total of 51 different writ-
ers. Coetzer et al. (2004) report a best equal error rate (EER) of 17.70% for
the Stellenbosch data set and an EER of 12.20% for Dolfing’s data set when
skilled forgeries are targeted by the HMM-based systems. In this thesis, the
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DTW-based system proposed by Coetzer et al. (2004) (for which the profi-
ciency was not reported when evaluated on Dolfing’s data set) is effectively
reproduced and subsequently significantly improved upon by also extracting
features that are able to detect generic curves and textural information. The
protocol for extracting the aforementioned features is detailed in Sections 3.4
and 3.5. In Section 5.5 it is shown that the systems proposed in this thesis are
significantly more proficient than the HMM-based system proposed by Coetzer
et al. (2004) when all of the aforementioned systems are evaluated on Dolf-
ing’s data set. This is achieved despite the fact that the systems proposed in
this thesis utilise fewer training samples (5 instead of 15) and fewer projection
angles (8 instead of 128) than the HMM-based system proposed by Coetzer et
al. (2004).

An alternative DTW-based algorithm for matching horizontal
and vertical projection profiles. Jayadevan et al. (2009) employ the SDRT
in order to specifically obtain the vertical and horizontal projection profiles of
an original signature image. The SDRT is therefore only calculated for pro-
jection angles of 0◦ and 90◦. They also proceed to combine said projection
profiles into a single feature vector. A set of three feature vectors is therefore
obtained for a specific signature image. A DTW algorithm is subsequently
employed for feature matching. However, instead of using DTW as proposed
in our research, Jayadevan et al. (2009) employ a DTW algorithm to determine
a so-called difference cost, but also to calculate the size of the closed area(s)
formed between the diagonal of the DTW-grid and the so-called matching path
(as determined by the DTW algorithm). The product of the aforementioned
difference cost and size of the closed area(s) subsequently determines the dis-
similarity score. The system is evaluated on the GPDS signature database and
the authors report a total error rate of 44.02% (that is an average error rate
of 22.01%) when five genuine signature samples per writer are employed for
training purposes. This happens to be the same number of samples that are
employed for training purposes by the systems proposed in this thesis. How-
ever, since the GPDS database contains non-ideal (noisy) offline signatures,
while Dolfing’s database contains ideal (noiseless) signature images, it is not
unexpected that our systems achieve superior results.

Local features modelled by ensembles of HMM-based classifiers.
Panton and Coetzer (2010) propose a feature extraction protocol that is also
based on the SDRT, but instead of exclusively focusing on global features,
they propose that a number of local and global features are appropriately
combined. This is in contrast to the systems proposed in this thesis that fo-
cus exclusively on the extraction of global features. The local features are
extracted by calculating the SDRT of local retinas within the signature in
question. Each different retina is modelled by a different HMM. When their
system is implemented on Dolfing’s data set, the authors report an EER of
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8.89%. This constitutes a significant improvement in the proficiency reported
for the benchmark system proposed by Coetzer et al. (2004) and also indicates
that the utilisation of classifier ensembles within the context of the SDRT war-
rants further investigation. Such an investigation is conducted in this thesis.

A writer-independent approach. Swanepoel (2015) proposes a writer-
independent approach to online and offline signature verification. Within the
context of offline signature verification, the SDRT is employed for the purpose
of extracting feature vectors from a questioned signature. Said feature vec-
tors are subsequently matched (through DTW) to the corresponding feature
vectors extracted from a reference signature that is known to belong to the
claimed writer. In this way, a dissimilarity vector is obtained of which the di-
mension is equal to the number of projection angles associated with the SDRT.
Examples of positive and negative dissimilarity vectors may be obtained from
a set of so-called guinea pig writers, which may subsequently be used to train
two different models in dissimilarity space, that is a model that represents all
positive signatures and a model that represents all negative signatures. These
models are therefore writer-independent. The authors employ quadratic dis-
criminant analysis (QDA) and SVMs to model the aforementioned two classes.
The aforementioned systems are evaluated on Dolfing’s data set and EERs of
6.06% and 5.55% are reported for the SVM-based and QDA-based systems
respectively when the parameters are chosen in a similar way as proposed in
this thesis. As is the case for the systems proposed in this thesis, five training
signatures are utilised per writer. A conventional writer-dependent approach
to signature modelling is however proposed in this thesis. The contribution of
this thesis is furthermore focussed on the development of alternative feature
extraction strategies (that are geared towards curved line detection and the
extraction of textural information) and not signature modelling per se. There-
fore, a direct comparison between the results reported in this thesis and those
reported by Swanepoel (2015) does provide valuable perspective, but it is not
indicative of the contribution of this thesis.

2.3 Texture-based recognition
In this thesis a novel approach to texture detection is proposed, which involves
the application of a modified SDRT to a normalised MPT. This approach en-
ables one to detect straight lines in polar space that coincide with spirals in
Cartesian space (Fick et al., 2016). Said spirals are well suited for extract-
ing periodic (textural) information from an image as explained in detail in
Section 3.4.

In this section existing research on the extraction of textural information
from images is discussed. These conventional approaches to texture detection
employ amongst other things, Gabor filters, log-polar transforms, the SDRT
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and the wavelet transform.

A log-polar transform and a discrete wavelet packet transform.
Pun and Lee (2003) propose that a log-polar transform of a questioned im-
age which contains textural information is obtained, after which a discrete
wavelet packet transform is applied to the result. They calculate the log-polar
transform in two steps. The first step involves the calculation of the polar
transform of the original image, while a logarithmic function is applied to said
polar transform during the second step. Although the log-polar transform is
related to the normalised MPT as proposed in this thesis, the discrete wavelet
packet transform is conceptually different from the SDRT and its modifica-
tions.

A combination of the SDRT and wavelet transforms. Jafari-Khouzani
and Soltanian-Zadeh (2005) employ the SDRT in combination with wavelet
transforms for the purpose of extracting rotation-invariant information from
images that contain textural patterns. Although this approach differs from
the strategy employed in this thesis, it does present an interesting perspec-
tive on how the use of the SDRT may contribute towards successful texture
classification. In order to convert rotational variations into translational vari-
ations, the SDRT is applied to the original image. The subsequent implemen-
tation of an efficient translation-invariant wavelet transform for the purpose of
texture-based feature extraction successfully eliminates rotational variations.
They also investigate the optimal number of projections required for accurate
and efficient computation of the SDRT. The authors consider a database that
contains two separate data sets. These data sets contain 25 and 24 texture im-
ages respectively. Maximum correct classification percentages of 97.90% and
97.40% are reported for the respective data sets.

The Gabor filter. Kekre and Bharadi (2010) propose that the Gabor fil-
ter (which is traditionally associated with texture recognition) is employed for
the purpose of signature verification, albeit online signature verification. The
Gabor filter is defined as a band-pass filter that extracts textural information
pertaining to both orientation and frequency. A Gaussian envelope is typically
employed for any Gabor filter. Said envelope is adjusted according to a sinu-
soidal function of a particular frequency that is orientated along a particular
axis. The authors acquired their own data set that contains 250 signatures
from 25 individual writers. The Euclidean distance is used for the purpose of
feature matching and therefore differs from the DTW-based approach proposed
in this thesis. The authors report an EER of 10.00% when no temporal infor-
mation is taken into account. The research conducted by Kekre and Bharadi
(2010) indicates that the extraction of textural information within the context
of offline signature verification warrants further investigation. Such an inves-
tigation is conducted in this thesis.
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2.4 Generic curve detection
Recall that the linear Hough transform (HT) detects straight lines in param-
eterised form as explained in Section 1.2.2. As mentioned in Section 1.2.2 the
detection of other generic curves within the context of the HT is made possi-
ble by considering higher dimensional parameter spaces. The aforementioned
ability however comes at the cost of a significant increase in computational
complexity. A three-dimensional parameter space c1c2c3 is for example re-
quired for detecting circles of the form (x− c1)2 + (y − c2)2 = c3

2.
For the purpose of this thesis, appropriately normalised MPTs (that con-

stitute grey-scale images) are however defined for the purpose of detecting
generic curved lines, as will be explained in detail in Section 3.5. In order to
achieve this, the SDRT is applied to the MPT in question. In this way, the
detection of concentric circles with arbitrary origins is facilitated.

A number of noteworthy existing systems that use the conventional HT or
adaptations thereof for the purpose of generic curved line detection is subse-
quently discussed. Said adaptations have been developed in order to exploit
the valuable characteristics of the HT without the notorious computational
complexity associated with the conventional HT. The review of the HT pub-
lished by Illingworth and Kittler (1998) provides an in-depth exploration of its
historical use, whereas the survey by Mukhopadhyay and Chaudhuri (2015)
provides perspective on the latest advancements in research regarding the HT.

A generalised HT for arbitrary shape detection. Ballard (1981) in-
troduced the concept of a generalised HT for shape detection. This approach
was novel at the time in the sense that it is capable of detecting shapes re-
gardless of whether the object boundary is connected or not. In order to
generalise the HT, the author proposes the use of directional information con-
tained within the object boundary, which leads to an increase in both efficiency
and proficiency. For an arbitrary shape, the utilisation of a so-called R-table
is proposed for representing the associated generalised HT.

Ellipse detection through the separation of HT parameter spaces.
Nair and Saunders (1996) propose an algorithm for ellipse detection, by con-
sidering five parameters within the context of the HT. This is achieved by
separating a five-dimensional parameter space into various sub-spaces, after
which the parameters are calculated independently (and not simultaneously).
This facilitates a significant decrease in computational complexity. The au-
thors also propose a variation of the HT that aims to detect an ellipse in
accumulation (parameter) space by searching for clusters instead of local max-
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ima. This strategy facilitates a further decrease in computational complexity.

A segment-based HT for the detection of primitive curves asso-
ciated with segments of an object boundary. Li et al. (2007) introduced
a segment-based HT that is specifically geared towards the detection of prim-
itive curves associated with segments of object boundaries in binary images.
The edge pixels associated with the object boundary are first isolated, after
which individual segments of said boundary are independently considered by
the HT in order to decrease computational complexity. The proposed strat-
egy is however only geared towards the detection of primitive curves such as
straight lines and circular arcs. For a database containing more than 30 000
images, a recognition rate of more than 95% is reported. The aforementioned
recognition rate is achieved despite a significant decrease in computational
complexity.

2.5 Concluding remarks
In this chapter the systems proposed in this thesis were placed into perspective
by outlining the architecture and proficiency of a number of existing systems
that are in some ways related to our systems. The architecture of the systems
proposed in this thesis is detailed in Chapters 3 and 4, while system proficiency
is investigated and reported in Chapter 5.



Chapter 3

Feature extraction

3.1 Introduction
In order to effectively compare two images, we propose that so-called global
feature vectors are extracted for the purpose of capturing the essence of the
respective images in their entirety. These feature vectors are therefore con-
structed in such a way that they extract as much relevant information per-
taining to the image in question as possible. This maximises the probability
of accurate verification at a later stage.

The proposed feature extraction protocol is based on the well-known stan-
dard discrete Radon transform (SDRT). Said transform is geared towards the
detection of straight lines in the original image (see Section 3.2). The SDRT
has proved to be robust (with respect to noise, as well as variations in scale,
position and orientation) (Wang et al., 2007; Hjouj and Kammler, 2008). Fur-
thermore, it was shown to be proficient in detecting skilled forgeries (within
the context of signature verification) on numerous occasions (Coetzer et al.,
2004; Jayadevan et al., 2009; Panton and Coetzer, 2010; Swanepoel, 2015).

In this thesis we aim to further exploit the above-mentioned attributes.
The SDRT is adapted in such a way that not only straight lines are detected
within the original image, but also curved lines (with various curvatures) and
certain textural properties of the image in question.

The detection of the above-mentioned features is made possible by first
constructing so-called multiresolution polar transforms (MPTs) of the original
image (Section 3.3). A modified version of the SDRT, namely the modified
discrete Radon transform (MDRT) may then be applied to an MPT in order to
obtain textural features (Section 3.4). It is shown in Section 5.5 that classifier
ensembles based on the above-mentioned features are either complementary to
or outperform a classifier that is solely based on the SDRT.

When the SDRT is applied to different MPTs, each with an origin located
at a different distance from the edge of the original image, different concentric
curved lines may be detected (Section 3.5). When the origin of the MPT is
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at a distance (from the edge of the image in question) that strives to infin-
ity, the SDRT is effectively obtained. These features therefore constitute a
generalisation of the SDRT that is able to detect curved lines with different
curvatures. It is shown in Section 5.5 that classifier ensembles based on such
a generalisation of the SDRT are either complementary to or outperform a
classifier that is solely based on the SDRT. The proposed feature extraction
protocol is conceptualised in Figure 3.1.

Figure 3.1: Overview of the proposed feature extraction protocol.

3.2 The standard discrete Radon transform
(SDRT)

The SDRT is geared towards the detection of straight lines in an image. In
order to achieve the aforementioned objective, projection profiles (Rθ) of the
image in question, I(x, y), are calculated from specified projection angles θ
(see Figure 3.2).

An axis x′ is defined that is orientated at a projection angle of θ with
respect to the horizontal x-axis. A projection profile (Rθ(x

′)) associated with
said projection angle θ is then obtained by accumulating pixel values along
parallel beams perpendicular to the x′-axis.

Eight evenly distributed projection angles are specified within half a revo-
lution, that is θ ∈ [0◦, 180◦), since projection profiles obtained by considering
the remaining angles, that is θ ∈ [180◦, 360◦), constitute reflections of the
projection profiles already obtained.
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Figure 3.2: Geometric interpretation of the SDRT (Toft, 1996).

A specific feature vector constitutes a projection profile of the image ob-
tained from one of the eight specified projection angles θ. The individual
feature vectors are often stored as columns within a matrix, that is commonly
referred to as a sinogram. When a sinogram is displayed as a grey-scale image,
pixels with large intensity values coincide with prominent lines in the original
image.

Feature setX1 (see Figure 3.1) consists of appropriately normalised versions
of eight different projection profiles (feature vectors) of the image in question.
Feature normalisation is discussed in Section 3.6.

Due to its robustness and proficiency, the SDRT (within the context of
feature set X1) has become a benchmark for feature extraction, especially
regarding offline signature verification (Coetzer et al., 2004; Panton and Co-
etzer, 2010; Jayadevan et al., 2009; Swanepoel, 2015). The SDRT is therefore
adapted/modified in such a way that it is geared towards the detection of
curved lines and textural patterns within an original image. We elaborate on
this in the remaining sections of this chapter.

3.3 A multiresolution polar transform (MPT)

3.3.1 Definition of the MPT

In order to obtain information that pertains to curved lines and texture within
a given image, a polar transform may be employed. The standard polar trans-
form P (r, φ) = I(r cosφ, r sinφ) constitutes a transformed version in polar
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coordinates of the original Cartesian image I(x, y). It is obtained by consider-
ing a set of radii (different values of r) and angles (different values of φ) with
respect to a specified origin (r = 0). The resolution of the polar transform, and
therefore the number of pixels considered (visited) in the original Cartesian
image is determined by a sampling rate.

The set of values for r may be specified in such a way that the interval
between two consecutive values of r is given by ∆r = 1 pixel. However, when
the set of values for φ is specified in such a way that the interval between
consecutive values of φ is fixed at ∆φ = 1◦, the arc length between consecutive
samples on the perimeter of a circle with radius r is given by ∆s = r∆φ.
An increase in r therefore results in a linear increase in the arc length ∆s.
This implies that, although ∆r = 1 pixel, not all of the pixel values in the
original image are considered (visited) since the arc length ∆s determines
the sampling rate for a specific value of r. In fact, for a given radius r, the
sampling rate is inversely proportional to the arc length, and the sampling rate
therefore becomes increasingly insufficient for larger values of r (see Figure 3.3).
A substantial number of pixel values in the original image is therefore not

Figure 3.3: Conceptualisation of the standard polar transform. The arc length ∆s
increases when the radius r increases, which leads to an insufficient sampling rate
for large values of r. The largest radius considered is denoted by rmax.

considered (visited) for large values of r. This deficiency associated with the
standard polar transform is conceptualised in Figure 3.4.
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Since the goal is to extract as much information as possible from the original
image, the standard polar transformation is therefore inadequate and has to
be improved upon.

Note that unless otherwise specified, zero-valued pixels are rendered white,
while one-valued pixels are rendered black. Within the context of static signa-
ture images, pen-strokes are therefore represented by black, one-valued pixels.

Figure 3.4: Illustration of the deficiencies associated with the standard polar trans-
form. (a) The original image. (b) The pixels that are considered (visited) when the
standard polar transform is employed. (c) The reconstructed image using infor-
mation obtained from the standard polar transform. Numerous inaccuracies are
observed for large values of r. The centre of the image coincides with r = 0.

A more refined approach is therefore proposed, namely the MPT. This
transform involves the calculation of the polar transform in such a way that
for each different specified value of r, a different set of values for φ is deter-
mined. More precisely, for larger values of r, a larger number of values for φ
is specified. In order to ensure that all pixels in the original Cartesian image
I(x, y) are considered (visited), the constraint ∆s = r∆φ ≤ 1 is imposed for
all values of r, which implies that ∆φ ≤ 1/r. In order to achieve this, and
also avoid division by zero when r = 0, we propose that the interval between
successive values of φ for a specific value of r is obtained as follows,

∆φ(r) =
1

r + 1
radians. (3.1)

Furthermore, the number of values (samples) for φ which has to be considered
for a specific value of the radius r, that is Nφ(r), may be deduced by noting
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the following,∑
∆s = 2πr =⇒

∑
r∆φ = 2πr =⇒

∑
∆φ = 2π. (3.2)

Therefore, when ∆φ(r) is defined as in Equation (3.1), the following is ob-
tained,

Nφ(r)−1∑
φ=φ0

1

r + 1
=

1

r + 1

Nφ(r)−1∑
φ=φ0

1 = Nφ(r)

[
1

r + 1

]
= 2π. (3.3)

From Equation (3.3) we conclude that Nφ(r) = d2π(r+ 1)e, where d e denotes
the ceiling operator. It is therefore clear that when Nφ(r) distinct, equally
spaced values of φ are specified for a specific value of r, the MPT ensures that
∆r = 1 pixel and ∆s ≤ 1 pixel. All the pixels in Cartesian space are therefore
considered, barring rounding errors (see Figure 3.5).

Figure 3.5: Illustration of the benefits associated with the MPT. (a) The original
image. (b) The reconstructed image using information obtained from the MPT. The
slight inaccuracies for large values of r are the result of rounding errors. The centre
of the image coincides with r = 0.

3.3.2 Normalisation of the MPT

The largest value of r that is considered during the calculation of the MPT is
denoted by rmax and specified as the ceiling of half of the diagonal distance of
the original image (see Figure 3.3). Therefore, the number of values for φ that
coincide with r = rmax constitutes the largest number of values for φ (across
all the specified values of r) that is considered during the calculation of the
MPT. As a result, we opt to fix the second dimension, that is the number of
columns T of the MPT, at d2π(rmax + 1)e and specify that

T = Nφ(r) = Nφ(rmax) = d2π(rmax + 1)e (3.4)
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for all values of r. Consequently, in order to store the MPT as a matrix, it is
necessary to duplicate information when r < rmax. This duplication of infor-
mation may however place an undesired emphasis on pixels that are located
close to the origin (r = 0). This emphasis is conceptualised in Figure 3.6. It is
clear that the centre pixel (where the origin is located) is considered (visited)
on at least four different occasions, while pixels that are located at a radius
r are each considered only once. When r = rmax this problem becomes more
apparent.

The MPT is therefore normalised in such a way that the sum of a subset of
pixels in the MPT, that coincides with a single pixel in Cartesian space, equals
one. In this way, a given pixel value in the original image is not emphasised
at the cost of another.

Figure 3.6: Conceptualisation of the MPT which illustrates how more emphasis is
placed on pixels closer to the origin (r = 0). Normalisation is therefore required.

When the unnormalised version of the MPT is denoted byM(r, φ) and the
normalised version by Mnorm(r, φ), the normalisation process is conducted as
follows,

Mnorm(r, φ) = η(r)M(r, φ). (3.5)

The weights η(r) are defined as follows,

η(r) =
d2π(r + 1)e

f(r)d2π(rmax + 1)e
, (3.6)
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where
f(r) =

(1− 2π)r

rmax
+ 2π. (3.7)

This ensures that a total weight of one is effectively assigned to all the
pixels in the MPT that coincide with a single pixel in Cartesian space, and
that a certain pixel is not emphasised at the cost of another.

The strategy employed for normalising the MPT is demonstrated through a
practical example in Figure 3.7, while the key differences between the standard
polar transform and the normalised MPT are illustrated in Figure 3.8. Note
that effectively no normalisation is conducted when r = rmax.

This carefully constructed MPT is considered in the subsequent feature
extraction steps (Sections 3.4 to 3.6).

Figure 3.7: A practical illustration of the rationale behind the normalisation of the
MPT. (a) The original image. (b) The unnormalised MPT of the image in (a) for
which the origin (r = 0) is located at the top right corner of (a) as indicated by the
red dot. The pixel values closer to the origin (r = 0) are clearly emphasised through
duplication. (c) The normalised version of the MPT depicted in (b). The values
of r and φ are specified as indicated in Figure 3.8 (b). This normalised version is
displayed through the use of a colour map in order to effectively convey the difference
in pixel values. This protocol therefore ensures that the undesired phenomenon of
emphasising certain pixels at the cost of others is avoided by assigning smaller values
(depicted by darker colours) to those (duplicated) pixels that are located closer to
the origin (r = 0).
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Figure 3.8: (a) Conceptualisation of an unnormalised standard polar transform
that is comprised of 360 different angles and K + 1 different radii. The interval
between consecutive angles is given by ∆φ = 1◦, while the interval between con-
secutive radii is given by ∆r = 1 pixel. Each entry in the transform (denoted by
a black square) is effectively assigned a weight of one. (b) Conceptualisation of a
normalised MPT that is comprised of T different angles and K + 1 different radii,
with T defined as in Equation (3.4). The interval between consecutive angles ∆φ is
dependent on the radius and defined in Equation (3.1), while the interval between
consecutive radii is given by ∆r = 1 pixel. The collection of entries in the transform
that are boxed in red and highlighted in yellow coincide with a single pixel in the
original image and is assigned a combined (summed) weight of approximately one.
Therefore, when r = 0, each individual entry (denoted by a black square) is assigned
a weight of approximately 1/T . However, when r = rmax, each individual entry is
assigned a value of one.
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3.4 Modification of the SDRT for texture
detection

3.4.1 Detection of spirals via the MPT

When the SDRT is applied to an MPT from a projection angle of θ as depicted
in Figure 3.9, where θ ∈ (0◦, 90◦), a single beam associated with the SDRT co-
incides with a single spiral in the original image space (Cartesian space). This
is due to the fact that along such a beam both r and φ vary. Furthermore,
when different values of the projection angle θ are considered, different types of
spirals are obtained. In particular, when the value of the projection angle θ in-
creases from 0◦ to 90◦ in the interval (0◦, 90◦), the associated spirals inevitably
become “sparser” (see Figure 3.10). Note that the spirals in Figure 3.10 (a),
associated with the scenario where θ = 22.5◦, do not cover the entire range of
radii in the interval r ∈ [0, rmax] and therefore extract a sub-optimal amount
of information. This issue will be addressed in Section 3.4.3.

Figure 3.9: Geometric interpretation of the SDRT when applied to a normalised
MPT.

Note that only angles in the interval θ ∈ (0◦, 90◦) need to be considered (see
Figure 3.11), since angles in the interval θ ∈ (90◦, 180◦) coincide with similar
spirals as those for θ ∈ (0◦, 90◦), except for the fact that the spirals associated
with θ ∈ (0◦, 90◦) rotate clockwise as r increases, while those for θ ∈ (90◦, 180◦)
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Figure 3.10: Conceptualisation of spirals that coincide with distinct beams associ-
ated with the SDRT when applied to an MPT, where (a) θ = 22.5◦, (b) θ = 45◦ and
(c) θ = 67.5◦. The spirals conceptualised here are obtained specifically when r = 0 is
chosen to be at the centre of the original image. Note that the spirals for θ = 22.5◦ do
not consider (visit) all radii in the interval r ∈ [0, rmax]. The information extracted
by these spirals is therefore insufficient.

rotate counterclockwise. No additional information is therefore extracted by
also considering the aforementioned spirals since the summed value acquired
via the SDRT is independent of the direction (clockwise/counterclockwise) of
summation within the context of the protocol explained in Section 3.4.2.

Similarly, since projections calculated from angles in the interval θ ∈
[180◦, 360◦) constitute reflections of those projections calculated from angles
in the interval θ ∈ [0◦, 180◦), the former projections are also considered redun-
dant.

For the specific scenarios where θ = 0◦ and θ = 90◦, the beams of the SDRT
do not coincide with spirals at all, but rather with radiating straight lines and
concentric circles respectively, therefore rendering these angles unsuitable for
the purpose of texture detection in the current context (see Figure 3.11).

It is important to note that the conceptualisation in Figure 3.10 is only
applicable to the specific case where the origin of the MPT (that is where
r = 0) coincides with the centre of the original image. This brings us to
the point of identifying two major deficiencies associated with the concept of
simply applying the SDRT to a normalised MPT for the purpose of feature
extraction:

1. Firstly, in order to facilitate the construction of various base classifiers
within a classifier ensemble, various origins (where r = 0) may be cho-
sen in calculating the MPT. The centre of the original image may not
be a good choice for such an origin since pertinent information is sub-
sequently associated with small radii. In fact, we rather opt to select
the aforementioned origins either at points along the edge of the original
image or at points located outside of the original image. Large portions
of the resulting spirals will therefore inevitably lie outside the original
image, rendering these portions of the spirals unable to extract any sig-
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Figure 3.11: Conceptualisation of the SDRT being applied to a normalised MPT.
The relevant targeted curves in the original image I(x, y) are specified for different
values of the projection angle θ.

nificant information. This deficiency may be rectified by constructing
a composite image that is comprised of the original image, as well as
appended reflections thereof. This protocol is discussed in more detail
in Section 3.4.2.

2. Secondly, it is clear from Figures 3.10 and 3.12 that when the SDRT
is applied to a normalised MPT at projection angles in the interval
θ ∈ (0◦, 90◦), a specific beam never covers both the entire range of
radii (that is r ∈ [0, rmax]) and the entire range of polar angles (that
is φ ∈ [0◦, 360◦)). The only notable exception is the centre beam asso-
ciated with the projection angle θ = 45◦. This beam is conceptualised
by the green line in Figure 3.12. Note that very little information is
extracted by the blue, pink and brown lines which are associated with
projection angles of θ = 22.5◦, θ = 45◦ and θ = 67.5◦, respectively. In
order to ensure that every beam covers at least all the radii in the interval
r ∈ [0, rmax], we propose a so-called modified discrete Radon transform
(MDRT) that considers a number of duplicates of the MPT in the φ-
dimension. This is discussed in more detail in Section 3.4.3.
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Figure 3.12: Conceptualisation of a selected number of beams (associated with
the SDRT) that extract information from a normalised MPT. Each beam coincides
with a segment of a specific spiral in Cartesian space. Only the green beam ex-
tracts information across all radii (that is r ∈ [0, rmax]) and all polar angles (that is
φ ∈ [0◦, 360◦)). The other beams extract relatively little information.

3.4.2 Reflections of the original image

In order to facilitate the construction of various base classifiers within a classi-
fier ensemble, we opt to specify different locations for the origin (that is where
r = 0) of the MPT as conceptualised in Section 3.3. Said locations also coin-
cide with the origins of different types of spirals in Cartesian space as explained
in the previous section. It is furthermore proposed that eight different origins
are specified, where each origin is either located along the edge of the origi-
nal image or outside said image. Large portions of the corresponding spirals
are consequently located outside the image in question. This is undesirable
since we aim to extract as much information as possible from the image by
effectively adding up pixel values along these spirals.

In order to facilitate the extraction of as much information as possible from
an image, we opt to construct a composite image that not only contains the
original image but also several reflections thereof. The manner in which these
reflections are appended to the original image depends on where the origin
of the MPT (r = 0) is located. The eight specified origins are depicted in
Figure 3.13 (a). The respective protocols for constructing suitable composite
images by appending reflected versions of the original image to said image, for
each of the specified origins, are conceptualised in Figure 3.13 (b) to (i). In
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each of the aforementioned scenarios, the reflected images are appended to the
original image in such a way that the centre of the composite image coincides
with the specified origin as pertaining to the original image. The centre of
each composite image also coincides with the respective origins as pertaining
to the reflections of the original image.

Figure 3.13: The proposed protocol for constructing composite images. The orig-
inal image and the eight specified origins for the MPT (indicated by red dots) are
depicted in (a). The specified origins and the corresponding composite images are
depicted in (b) to (i). For each of the aforementioned scenarios, the original image
is reflected through the purple axis to obtain the reflected image depicted in purple.
Similarly, the original image is reflected through the blue axis to obtain the reflected
image depicted in blue, while the original image is reflected through the selected
origin (denoted by the red dot) to obtain the reflected image depicted in pink.
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Three examples of how the above-mentioned composite images are con-
structed are presented in Figure 3.14, specifically when the origin of the MPT
(r = 0) is located at three different points, either along the edge of the original
image or outside of the original image.

Figure 3.14: Examples of how composite images are constructed when the origin of
the MPT (r = 0) is chosen to be at (a) the bottom right corner of the original image,
(b) the top right corner of the original image, and (c) the point midway between the
two bottom corners of the original image. In each case, the composite image (boxed
in blue) consists of the original image (boxed in green) and three reflections thereof.
The relevant origin (r = 0) is denoted by a red dot.

The MPT may now be applied to any of these newly constructed composite
images, with the origin of the MPT (r = 0) located at the centre of the
composite image in question. The SDRT may then be applied to such an
MPT, thereby effectively extracting information from the original image via
segments of spirals that are completely contained within the composite image
(see Figure 3.15).

Although this strategy guarantees that segments of spirals will not be lo-
cated outside the image, it does not guarantee that these spirals will cover the
entire set of specified radii (r ∈ [0, rmax]). This is especially evident for the
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Figure 3.15: (a) A spiral that coincides with a distinct beam associated with the
SDRT that is applied to an MPT for the projection angle θ = 22.5◦. The composite
image is constructed in the same way as the one depicted in Figure 3.14 (a). The
origin therefore coincides with the bottom right corner of the original image. (b) The
same scenario as the one depicted in (a). In this case, eight spirals that coincide with
eight different parallel beams are shown. (c) The same scenario as the one depicted
in (a). In this case, those segments of the spiral that are located in the reflected
images are superimposed onto the original image. This indicates that (in reality)
pixel values within the original image are summed along a path that resembles (in
shape) a set of shark fins. (d) The same scenario as the one depicted in (c), but
analysed using the protocol in (b). The eight different parallel beams of the SDRT
are now associated with eight different paths, each one resembling a set of shark fins.

less sparse (more tightly packed) spirals associated with projections calculated
from relatively small projection angles θ (see Figure 3.10 (a) and Figure 3.15).
It is therefore proposed that the SDRT be modified in order to improve the
feature extraction protocol via the MPT by ensuring that at least all the radii
in the interval r ∈ [0, rmax] are covered (visited). This strategy is explained in
greater detail in the following section.

3.4.3 The modified discrete Radon transform (MDRT)

When the SDRT is applied to an MPT for relatively small values of the pro-
jection angle θ, information is extracted from a composite image (like the ones
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depicted in Figures 3.13 and 3.14) by adding up pixel values along relatively
dense spirals. This phenomenon can be easily explained by considering the
yellow beam in Figure 3.12 for which θ = 22.5◦. Along said beam, the radius
r increases less rapidly than the polar angle φ, which results in the fact that,
although all angles in the interval φ ∈ [0◦, 360◦) are covered, only a relatively
small subset of the radii in the interval r ∈ [0, rmax] is visited. This problem
is evident in Figure 3.10 (a) and Figure 3.15. The associated projection angle
for both of these examples is also θ = 22.5◦. The essence of this problem is
that, for any particular spiral, a maximum of one revolution is possible within
the context of the SDRT.

In order to allow a spiral to complete more than one revolution and there-
fore cover the entire range of radii r ∈ [0, rmax], a normalised MPT has to
be duplicated at least once. This leads to the concept of a modified discrete
Radon transform (MDRT) which is now explained in greater detail.

Since the MPT is periodic in the φ-direction, one or more duplicates thereof
may be concatenated to the original MPT-matrix as illustrated in Figure 3.16.
When the SDRT of this concatenated matrix is obtained, where said matrix
contains a sufficient number of duplicates, it should be clear from Figure 3.16
that a single beam is now able to cover the entire range of radii r ∈ [0, rmax].
This therefore facilitates the possibility that the corresponding spiral (in Carte-
sian space) completes more than one revolution, thereby covering the entire
composite image. Per definition, the MDRT therefore constitutes the SDRT
of the periodic continuation of a normalised MPT.

For the example shown in Figure 3.16, the projection angle is given by
θ = 22.5◦. In this example, only half of the total range of radii is covered by
the first revolution which only involves the original normalised MPT, but the
presence of the concatenated duplicate of said MPT ensures that the entire
range of radii is covered.

Similarly, for projection angles other than θ = 22.5◦, the concatenation
of an appropriate number of duplicates to the original MPT will ensure that
the entire range of radii is covered. Figure 3.17 illustrates how the MDRT
facilitates the coverage of the entire range of radii. The improvement is clear
when Figure 3.17 is compared to Figure 3.15.

For the purpose of this thesis, projection angles smaller than 11.25◦ will not
be considered. A fixed number of three duplicates will therefore be appended
to the original normalised MPT.

Whenever we refer to the MDRT of an image in the remainder of this thesis,
it is implied that the MDRT is applied to the composite version of said image
as explained in Figure 3.13.

3.4.4 Texture detection

In this section we explain how features that are indicative of textural infor-
mation within an image may be inferred from its MDRT. For this purpose,
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Figure 3.16: Geometric interpretation of the MDRT. For a projection angle of
θ = 22.5◦, the concatenation of a single duplicate of the original normalised MPT is
sufficient to ensure that the entire range of radii is covered.

we refer to Figure 3.17 in which case the projection angle associated with the
MDRT is given by θ = 22.5◦. We concluded in the previous section that a
specific beam associated with the MDRT coincides with a curve in Cartesian
space that resembles a set of shark fins (see Figure 3.17 (c)). Through applying
the MDRT, the pixels in the original image are therefore summed along this
curve in order to obtain a specific feature value within a feature vector. The
other features within said feature vector are associated with beams that are
parallel to the beam in question.

Note that the shark fins in Figure 3.17 (c) is comprised of two distinct sets
of concentric curves as conceptualised in orange and green in Figure 3.18.

The distance between consecutive concentric curves within a given set may
be interpreted as a “period” which is inversely proportional to a “frequency”.
It should be clear that for larger values of the projection angle θ, the associ-
ated spirals are more sparse (see Figure 3.10), which coincides with a smaller
frequency and therefore a coarser texture.

Different parallel beams that are associated with the same projection angle
are therefore geared towards the detection of textures with a similar coarseness
while allowing for variations in phase. In order to compensate for these vari-
ations, corresponding feature vectors that are extracted from different images
are matched through dynamic time warping (DTW) as detailed in Section 4.2.

Textural information may now be extracted from an image in two different
ways:

1. Specify different projection angles θ for the MDRT. These feature vectors
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Figure 3.17: (a) A spiral that coincides with a distinct beam associated with the
MDRT for the projection angle θ = 22.5◦. The composite image is constructed in
the same way as the ones depicted in Figure 3.14 (a). The origin therefore coincides
with the bottom right corner of the original image. (b) The same scenario as the
one depicted in (a). In this case, eight spirals that coincide with eight different
parallel beams are shown. (c) The same scenario as the one depicted in (a). In
this case, those segments of the spiral that are located in the reflected images are
superimposed onto the original image. This indicates that (in reality) pixel values
within the original image are summed along a path that resembles (in shape) a set of
shark fins. (d) The same scenario as the one depicted in (c), but analysed using the
protocol in (b). The eight different parallel beams of the MDRT are now associated
with eight different paths, each one resembling a set of shark fins.

are therefore based on the periodicity or coarseness of the texture.and

2. Specify different origins for the MPT (that is where r = 0), either along
the edge of the original image or outside said image. These feature
vectors are therefore based on the orientation of the textural pattern.

Figure 3.19 provides an overview of the proposed texture extraction protocol.
The first approach towards texture detection involves the extraction of

seven different feature sets Xi, i = 2, ..., 8 based on seven different values
of the projection angle θ, therefore representing seven distinct periodicities.
The eight distinct feature vectors that form part of a specific feature set are
associated with eight different locations of the origin (that is where r = 0) of
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Figure 3.18: The concentric curves that form part of a shark fin shaped path in
Cartesian space. The curves represented in green and orange constitute two distinct
sets of concentric paths. For this specific case, the origin of the MPT (r = 0) is
located at the bottom right corner of the original image and the projection angle
associated with the MDRT is given by θ = 22.5◦.

the MPT. Said origins are located either along the edge of the original image
or outside said image. The distance between two images, based on one of
these feature sets, is defined as the average DTW-based distance between the
corresponding feature vectors. The seven feature sets Xi, i = 2, ..., 8 will be
associated with seven different base classifiers in a classifier ensemble. We
elaborate on the relevant DTW-based algorithm for feature matching, as well
as the protocol for ensemble construction in Sections 4.2 and 4.5 respectively.

The second approach towards texture detection involves the extraction of
eight different feature sets Xi, i = 9, ..., 16 based on eight different origins (that
is where r = 0) of the MPT, where each origin is either located along the edge of
the original image or outside said image, therefore representing eight different
orientations. The seven distinct feature vectors that form part of a specific
feature set are associated with seven different values of the projection angle θ,
therefore representing seven distinct periodicities. The distance between two
images, based on one of these feature sets, is defined as the average DTW-based
distance between the corresponding feature vectors. The eight different feature
sets Xi, i = 9, ..., 16 will be associated with eight different base classifiers in a
classifier ensemble.

As previously mentioned, the beams associated with the SDRT when ap-
plied to an MPT for projection angles of θ = 0◦ and θ = 90◦ do not coincide
with spirals in Cartesian space and are therefore not employed for the purpose
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Figure 3.19: Overview of the proposed feature extraction protocol that is based on
the detection of textural information.

of texture detection. In particular, we note that for θ = 0◦ the associated
beams coincide with straight lines in Cartesian space that radiate outwards
from the chosen origin (where r = 0). Furthermore, for θ = 90◦, the as-
sociated beams coincide with concentric circles in Cartesian space which are
centred at the chosen origin. The scenario where θ = 90◦ is however valuable
within the context of curved line detection as we explain in the subsequent
section.

3.5 Generalisation of the SDRT for curved line
detection

For the specific scenario within the context of the SDRT in which the projection
angle is given by θ = 90◦, the beams associated with the SDRT when applied to
an MPT coincide with concentric circles in the original image space (Cartesian
space). This is attributed to the fact that each horizontal line (associated
with a projection angle of θ = 90◦) within an MPT corresponds to a single
radius r and all polar angles φ. In this scenario the associated “spirals” have a
maximum curvature resulting in concentric circles. This concept is illustrated
in Figure 3.20 (a) for the specific scenario where the origin of the MPT is
located at the bottom right corner of the original image. Only a fraction
(25%) of the concentric circles are therefore located within the image.

As per usual, the interval between consecutive radii within the context of
the MPT is given by ∆r = 1 pixel. The origin of the MPT (where r = 0) may
now be progressively shifted further away from the edge of the image while
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Figure 3.20: Conceptualisation of curved lines that may be detected when the
origin (that is where r = 0) of the MPT is located on the line that passes through
the centre and the bottom right corner of the image. The distance d between the
origin of the MPT and the bottom right corner is specified as follows: (a) d = 0
pixels, (b) d = 70 pixels, (c) d = 140 pixels, (d) d = 210 pixels, (e) d = 280 pixels,
(f) d = 350 pixels and (g) d→∞.

still being located on the line that passes through the centre of the image and
the bottom right corner. When the constraint that ∆r = 1 pixel is imposed
throughout the process, the concentric curves depicted in Figure 3.20 (b) to
(g) are obtained. When d is defined as the distance between said origin and
a corner of the image, the curvature of the concentric curves progressively
decreases as d increases. Straight lines are effectively obtained when d → ∞,
in which case the SDRT is effectively calculated. This strategy may therefore
be perceived as a generalisation of the SDRT.

Note that the construction of a composite image that contains reflections
of the original image is not required for a projection angle of θ = 90◦ since
a circle is completed within a single revolution. Furthermore, the duplication
of the MPT is not required either, since that would result in a repetition of
information. The application of the SDRT is therefore sufficient for extracting
the features discussed in this section and the MDRT as defined in Section 3.4.3
is not required within the current context.

We opt to extract features in this way by first specifying that the origins
(that is where r = 0) of the MPTs are located at 16 different evenly distributed
locations on an ellipse that encloses the original image. The origins of these
MPTs are therefore specified in a different way than was the case for the MPTs
associated with the extraction of textural information. By adopting this pro-
tocol curves with 16 different orientations may be detected, of which eight are
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deemed concave (see Figure 3.21 (a)) and eight convex (see Figure 3.21 (b)).
The detection of curves with different curvatures is made possible by specifying
different values for d as conceptualised in Figure 3.20.

Figure 3.21: Conceptualisation of how curved lines with identical curvatures may
be defined as convex or concave based on their orientation. The curved lines in (a)
are concave, while those in (b) are convex with respect to the bottom right corner.

The benchmark SDRT is associated with the special case where d → ∞.
Feature set X1 therefore consists of eight different feature vectors, where each
feature vector constitutes a projection of the original image from a certain
projection angle θ (see Figure 3.1). Within the context of the benchmark
SDRT, only eight feature vectors are required since concavity or convexity
are not attributed to straight lines. When six other values of d are specified,
six other feature sets, Xi, i = 17, ..., 22, may be constructed. The sixteen
different feature vectors that constitute a specific feature set are associated
with sixteen different locations of the origin (that is where r = 0) of the MPT.
Said origins are located at evenly distributed intervals on an ellipse that is
concentric to the innermost ellipse which passes through the four corners of
the original image (see Figure 3.22). The innermost ellipse is associated with
d = 0 pixels and feature set X17. The subsequent ellipses are associated with
d = 70 pixels, d = 140 pixels d = 210 pixels and 280 pixels respectively (and
therefore feature sets X18, X19, X20 and X21), while the outermost ellipse is
associated with d = 350 pixels and feature set X22.

Figure 3.23 provides an overview of the proposed feature extraction proto-
col that is based on the detection of curved lines within an image. The distance
between two images, based on one of these feature sets, is defined as the average
DTW-based distance between the corresponding feature vectors. The above-
mentioned six feature sets will be associated with six different base classifiers
within a classifier ensemble as we explain in Sections 4.1, 4.2 and 4.5.

3.6 Feature normalisation
Feature vectors are typically normalised in such a way that they constitute
scale, translation and rotation invariant representations of an image. How-
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Figure 3.22: Conceptualisation of the concentric ellipses associated with different
values of d. For a specific value of d, the origins of the respective MPTs are located
at 16 evenly distributed positions on said ellipse. These positions are indicated by
red dots for the specific ellipse associated with d = 350 pixels.

Figure 3.23: Overview of the proposed feature extraction protocol that is based on
the detection of curved lines.

ever, within the context of detecting skilled forgeries among handwritten of-
fline signatures, it is reasonable to assume that the forgeries are of decent
quality. Said forgeries are therefore not expected to differ substantially from
genuine reference samples with regards to their orientation. Within the scope
of this thesis we therefore only aim to render the extracted feature vectors
scale and translation invariant. Should the proposed systems however be ap-
plied to other types of data, we may opt to also enforce rotation invariance.
In Section 6.2.1 we explain how rotation invariant features may be obtained
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should this be the objective of another application. For now it suffices to note
that feature sets X17 to X22 are already rotation invariant since the MPT
converts rotational variations into translational variations. When the SDRT
is therefore applied to the aforementioned MPT, rotational variations within
the original image are effectively removed through a subsequent normalisation
that ensures translation invariance.

Scale and translation invariance are achieved as follows. Since ideal (noise-
less) signature data is considered for experimental purposes, the proposed sys-
tems first calculate an appropriate bounding box for the original image and
crop said image accordingly. Once the relevant feature vectors have been ex-
tracted, the zero-valued entries are decimated from both ends of each feature
vector. The dimension of each of the truncated feature vectors is subsequently
adjusted to a specified value through nearest-neighbour interpolation. The
resulting feature vectors that are associated with a specific feature set are sub-
sequently placed into the columns of a matrix. Each entry within said matrix
is finally divided by the standard deviation across all of its entries.

3.7 Concluding remarks
In this chapter we have demonstrated how textural information may be ex-
tracted from an image by appropriately modifying the SDRT and applying it
to various MPTs. We also showed how the SDRT may be generalised for the
purpose of generic curved line detection through the construction of appropri-
ate MPTs. In the next chapter we explain how the corresponding feature sets
extracted from different images may be appropriately matched.



Chapter 4

Feature matching, threshold
selection and classifier ensembles

4.1 Introduction
In Chapter 3 we explained how four groups of feature sets may be extracted
from each sample (image). The aforementioned four groups of feature sets
are conceptualised in Figure 4.1. The average distance between each feature
set extracted from a questioned sample and the corresponding feature sets
extracted from genuine samples of the claimed class may subsequently be esti-
mated. The proposed protocol for estimating the aforementioned raw distance
associated with a specific feature set is discussed in Section 4.2.

In order to ensure that distances associated with samples from different
classes are comparable, each raw distance is normalised on a class-specific basis.
A normalised dissimilarity value is therefore obtained which is subsequently
converted into a normalised score, as explained in Section 4.3.

Since intra-class variations have now been reduced, one may proceed to
employ a single global threshold to each normalised score in order to classify a
questioned sample. Each questioned sample will be classified as either positive,
therefore concluding that it belongs to the claimed class, or negative, therefore
concluding that it does not belong to the claimed class. The threshold selection
protocol is discussed in more detail in Section 4.4.

When each feature set is associated with a distinct classifier, the normalised
scores for a specific feature set from a number of positive and negative ques-
tioned samples are used to gauge the overall accuracy of the associated clas-
sifier. Various classifier ensembles may be subsequently constructed by as-
sembling the classifiers associated with two or more feature sets. Ensemble
construction is discussed in more detail in Section 4.5. The classifier combina-
tion protocol for classifiers within a specific ensemble is detailed in Section 4.6.

48



CHAPTER 4. FEATURE MATCHING, THRESHOLD SELECTION AND
CLASSIFIER ENSEMBLES 49

Figure 4.1: Conceptualisation of the four distinct groups of feature sets extracted
by the systems proposed in this thesis. (a) A feature set that contains information
extracted via the standard discrete Radon transform (SDRT). (b) A group of feature
sets that are extracted by applying the modified discrete Radon transform (MDRT)
to a normalised multiresolution polar transform (MPT). Each feature set is associated
with a specific textural periodicity. (c) A group of feature sets that are extracted
by applying the MDRT to a normalised MPT. Each feature set is associated with
a specific textural orientation. (d) A group of feature sets that are extracted by
applying the SDRT to a normalised MPT by only considering a projection angle of
θ = 90◦. Each of the aforementioned feature sets is geared towards the detection of
specific curved lines.

4.2 Dynamic Time Warping (DTW)
Again consider Figure 4.1 that conceptualises the relevant four groups of fea-
ture sets and their dimensions. Each feature vector constitutes a column of
a matrix. Note that the first group (see Figure 4.1 (a)) consists of a single
feature set (X1) that contains eight feature vectors (V1 to V8). The second
group (see Figure 4.1 (b)) consists of seven feature sets (X2 to X8), where
each feature set contains eight feature vectors (V1 to V8). The third group (see
Figure 4.1 (c)) consists of eight feature sets (X9 to X16), where each feature set
contains seven feature vectors (V1 to V7). The final group (see Figure 4.1 (d))
contains six feature sets (X17 to X22), where each feature set is comprised of
sixteen feature vectors (V1 to V16).
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The distance (based on a specific feature set X) between a questioned sam-
ple Iq and a positive reference sample Iω that is known to belong to the claimed
class ω, may now be estimated. In order to achieve this, the average distance
between the corresponding feature vectors extracted from these samples has
to be obtained. This enables us to determine whether a questioned sample Iq
should be classified as positive or negative. In Figures 4.2, 4.3, 4.4 and 4.5
examples of the aforementioned feature vectors are presented. Note that the
raw DTW-based distances between the feature vectors depicted in these figures
may differ substantially between different groups of classifiers, but within the
context of a specific group, the distances are comparable. This is attributed
to the fact that the features have already been appropriately normalised as
explained in Section 3.6. Feature-specific normalisation within the context of
a specific group of classifiers is therefore not required.

Figure 4.2: SDRT-based feature vectors associated with a projection angle of
θ = 22.5◦. (a) An example of a genuine reference sample Iω. (b) An example
of a positive questioned sample I+q . (c) An example of a negative questioned sample
I−q , which constitutes a skilled forgery. (d) The feature vector associated with (a).
(e) The feature vector associated with (b) is depicted in green, while the feature
vector associated with (a) is reproduced (in blue) for comparison purposes. The raw
DTW-based distance between the respective feature vectors depicted in green and
blue is 36.68. (f) The feature vector associated with (c) is depicted in red, while the
feature vector associated with (a) is reproduced (in blue) for comparison purposes.
The raw DTW-based distance between the respective feature vectors depicted in red
and blue is 63.09.
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Figure 4.3: MDRT-based feature vectors associated with a projection angle of
θ = 33.75◦. These feature vectors are geared towards the detection of textural
information based on specific periodicities. The origin of the MPT is located at the
bottom right corner of the original image. (a) An example of a genuine reference
sample Iω. (b) An example of a positive questioned sample I+q . (c) An example
of a negative questioned sample I−q , which constitutes a skilled forgery. (d) The
composite image associated with (a). (e) The composite image associated with (b).
(f) The composite image associated with (c). (g) The feature vector associated with
(d). (h) The feature vector associated with (e) is depicted in green, while the feature
vector associated with (d) is reproduced (in blue) for comparison purposes. The raw
DTW-based distance between the respective feature vectors depicted in green and
blue is 6.58. (i) The feature vector associated with (f) is depicted in red, while the
feature vector associated with (d) is reproduced (in blue) for comparison purposes.
The raw DTW-based distance between the respective feature vectors depicted in red
and blue is 15.11.
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Figure 4.4: MDRT-based feature vectors associated with a projection angle of
θ = 11.25◦. These feature vectors are geared towards the detection of textural
information based on specific orientations. The origin of the MPT is located at the
bottom left corner of the original image. (a) An example of a genuine reference
sample Iω. (b) An example of a positive questioned sample I+q . (c) An example
of a negative questioned sample I−q , which constitutes a skilled forgery. (d) The
composite image associated with (a). (e) The composite image associated with (b).
(f) The composite image associated with (c). (g) The feature vector associated with
(d). (h) The feature vector associated with (e) is depicted in green, while the feature
vector associated with (d) is reproduced (in blue) for comparison purposes. The raw
DTW-based distance between the respective feature vectors depicted in green and
blue is 16.45. (i) The feature vector associated with (f) is depicted in red, while the
feature vector associated with (d) is reproduced (in blue) for comparison purposes.
The raw DTW-based distance between the respective feature vectors depicted in red
and blue is 19.53.
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Figure 4.5: Feature vectors extracted by applying the SDRT to an MPT from a
projection angle of θ = 90◦. These feature vectors are geared towards the detection
of curved lines. The origin of said MPT is located on the line that passes through the
centre of the original image and its bottom right corner. The distance between the
origin of the MPT and said corner of the image is given by d = 210 pixels. (a) An
example of a genuine reference sample Iω. (b) An example of a positive questioned
sample I+q . (c) An example of a negative questioned sample I−q , which constitutes
a skilled forgery. (d) The feature vector associated with (a). (e) The feature vector
associated with (b) is depicted in green, while the feature vector associated with
(a) is reproduced (in blue) for comparison purposes. The raw DTW-based distance
between the respective feature vectors depicted in green and blue is 10.26. (f)
The feature vector associated with (c) is depicted in red, while the feature vector
associated with (a) is reproduced (in blue) for comparison purposes. The raw DTW-
based distance between the respective feature vectors depicted in red and blue is
20.29.

The most straightforward and efficient method for estimating the distance
between two feature sets may involve the calculation of the average Euclidean
distance between the corresponding feature vectors. However, two distinct
feature vectors rarely are appropriately aligned. The Euclidean distance be-
tween two unaligned feature vectors may therefore not constitute an accurate
indication of the similarity between them.

We rather opt to employ a more sophisticated distance measure which
is based on dynamic time warping (DTW). The proposed DTW-based dis-
tance measure non-linearly aligns the two feature vectors in question, based
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on prominent features like peaks and valleys (see Figure 4.6). The Euclidean
distance between the aligned feature vectors is subsequently calculated. This
protocol therefore results in a more realistic estimate of the true distance be-
tween Iq and Iω. DTW-algorithms have traditionally been employed within
the context of human speech recognition (see Deller et al. (1999)). The reader
is also referred to Keogh and Pazzani (2001), Henniger and Muller (2007),
and Jayadevan et al. (2009) for detailed discussions on a number of DTW-
algorithms.

Figure 4.6: Conceptualisation of the difference between (a) the Euclidean distance
and (b) a DTW-based distance (Swanepoel, 2015).

In order to ensure that the above-mentioned alignment of two feature vec-
tors is not based on prominent features that are too far apart, the bandwidth
associated with the DTW-algorithm is restricted to approximately 8 percent
of the feature vector dimension.

It is assumed that N genuine reference samples (images) are available for
each class ω, that is I ω = {I(1)ω , ..., I

(N)
ω }. When a specific feature set X

is extracted from each sample (image) in I ω, the resulting feature sets are
referred to as X ω = {X(1)

ω , ..., X
(N)
ω }.

The distance metric D(X(a), X(b)) denotes the average DTW-based dis-
tance between the corresponding feature vectors contained within feature sets
X(a) and X(b).

The raw distance D(Xq,X ω) between a questioned feature set Xq and the
N feature sets that constitute X ω and are known to belong to the claimed
class ω, is subsequently determined. Said raw distance is therefore defined as
the average DTW-based distance between the feature vectors that constitute
Xq and the corresponding feature vectors that constitute X ω, that is

D(Xq,X ω) =
1

N

N∑
i=1

D(Xq, X
(i)
ω ). (4.1)
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4.3 Score normalisation
Once the raw distance, based on a specific feature set X, between a ques-
tioned image and N authentic reference samples has been obtained, a score
is assigned to the questioned image. It is however essential that the raw dis-
tance, D(Xq,Xω), is first normalised on a class-specific basis in order to ensure
that intra-class variation is minimised. The aforementioned normalisation is
achieved as follows,

Dnorm(Xq,X ω) =
D(Xq,X ω)− µω

µω
, (4.2)

where

µω =
1

N

N∑
i=1

N∑
j>i

D(X(i)
ω , X(j)

ω ) (4.3)

and
N =

N(N − 1)

2
. (4.4)

This normalisation strategy is similar to the well-known z-score, in which
case the denominator in Equation 4.2 constitutes the standard deviation σω of
the raw distances between reference samples from class ω. Since N is typically
small, we opt to rather estimate intra-class variation by considering the average
raw distance µω between reference samples from class ω. The reader is referred
to Jain et al. (2005) for a more detailed discussion on the z-score and other
score normalisation techniques.

The normalised distance Dnorm(Xq,Xω) is subsequently converted into a
normalised score Snorm(Xq,Xω) as follows,

Snorm(Xq,Xω) = −Dnorm(Xq,Xω). (4.5)

4.4 Threshold selection
Once a normalised score, based on feature set X, has been obtained for a
questioned sample Iq, we aim to establish whether said sample belongs to the
claimed class ω. For this purpose a global threshold τ is applied to the afore-
mentioned normalised score. Said threshold is referred to as a global threshold
since the same threshold is applied to all questioned samples irrespective of
the claimed class ω. When Snorm(Xq,Xω) ≥ τ , Iq is deemed to be a positive
sample based on feature set X, otherwise it is deemed to be a negative sample.

An optimisation set is typically employed in order to obtain an estimate for
the global threshold τ that results in an equal error rate (EER). Recall that
the EER is achieved when the false acceptance rate (FAR) equals the false
rejection rate (FRR). Within the context of offline signature verification, the
optimisation set is typically comprised of a number of guinea-pig writers for
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which skilled forgeries have been acquired in a controlled environment. The
above-mentioned threshold is then used to authenticate questioned samples
in an evaluation set. Within the context of offline signature verification, the
evaluation set is typically comprised of different writers from those in the
optimisation set and are representative of the general public. A classifier based
on a specific feature set X may be evaluated by conducting a number of trials,
as explained in Section 5.4. For each trial distinct sets of writers are employed
for optimisation and evaluation purposes respectively. The proficiency of a
specific classifier based on a specific trial may be subsequently quantified by
its average error rate (AER), that is the average of its FAR and FRR. Recall
that the global threshold τ for a specific trial is applied to the evaluation set.
The overall proficiency of the above-mentioned classifier is finally quantified
by its mean AER, that is µAER, across all trials.

4.5 Classifier ensemble construction
When each feature set X is associated with a unique classifier C, two or more
classifiers may be assembled, thereby constructing a classifier ensemble. Four
classifier ensembles are considered in this study.

The first ensemble EI consists of the single base classifier C1 associated
with feature set X1. This ensemble constitutes the current benchmark system
that is geared towards the detection of straight lines in the original image and
utilises feature vectors based on projection profiles associated with the SDRT.
Ensemble EI is therefore defined as follows, EI = {C1}.

The second ensemble EII consists of the seven base classifiers C2 to C8

associated with feature sets X2 to X8. Each of these base classifiers is geared
towards the detection of textural patterns with a distinct periodicity. Ensemble
EII is therefore defined as follows, EII = {C2, C3, C4, C5, C6, C7, C8}.

The third ensemble EIII consists of the eight base classifiers C9 to C16 associ-
ated with feature setsX9 toX16. Each of these base classifiers is geared towards
the detection of textural patterns with a distinct orientation. Ensemble EIII is
therefore defined as follows, EIII = {C9, C10, C11, C12, C13, C14, C15, C16}.

The fourth and final ensemble EIV consists of the seven base classifiers,
C1, C17, C18, C19, C20, C21 and C22, associated with feature sets X1, X17,
X18, X19, X20, X21 and X22. Each of these base classifiers is geared towards
the detection of concentric curved lines that are associated with a distinct range
of curvatures. Note that classifier C1, that is only geared towards the detection
of straight lines in the original image, is included within EIV. Ensemble EIV,
which may therefore be considered a generalisation of classifier C1, is defined
as follows, EIV = {C1, C17, C18, C19, C20, C21, C22}.
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4.6 Classifier combination
Since four classifier ensembles EI, EII, EIII and EIV are now available, the base
classifiers within each of these ensembles may subsequently be combined in
order to gauge overall system proficiency. We opt to combine the classifiers
within EII, EIII and EIV through both score averaging and majority voting.
When the base classifiers within ensembles EII, EIII and EIV are combined
through score averaging, the resulting combined classifiers are referred to as
C

(s)
EII

, C(s)
EIII

and C(s)
EIV

, respectively. Similarly, when the base classifiers within
ensembles EII, EIII and EIV are combined through majority voting, the result-
ing combined classifiers are referred to as C(m)

EII
, C(m)

EIII
and C(m)

EIV
.

Score averaging. In the case of score averaging, the average score across
all base classifiers within a specific classifier ensemble E is first obtained, after
which a global threshold τ is applied to the average score. Each base classifier
within E is therefore assigned an equal weight. For a specific trial, a global
threshold τ is selected, which results in an EER when all the scores in the
relevant optimisation set are considered. Said threshold is subsequently applied
to all the scores in the relevant evaluation set. The mean µAER and standard
deviation σAER of the AERs across all of the individual trials are subsequently
reported.

Majority voting. In the case of majority voting, different global thresh-
olds τ are applied to the scores associated with different base classifiers within
a specific classifier ensemble E. For a specific trial, a global threshold is se-
lected for a specific base classifier that results in an EER when all the scores
in the relevant optimisation set are considered. Said threshold is subsequently
applied to all the scores associated with the aforementioned classifier in the
relevant evaluation set. A questioned sample is accepted when the majority
of base classifiers within a specific ensemble decides to accept it, otherwise it
is rejected. The mean µAER and standard deviation σAER of the AERs across
all of the individual trials are subsequently reported.

When evaluated on Dolfing’s data set, that contains authentic offline sig-
natures and skilled forgeries from 51 writers, the statistics µAER and σAER

estimated for the combined classifiers C(s)
EII

, C(s)
EIII

, C(s)
EIV

, C(m)
EII

, C(m)
EIII

and C(m)
EIV

may be compared to those for the benchmark system EI = {C1}. In this way
the improvement in system proficiency (and the statistical significance of said
improvement) that results from the research presented in this thesis may be
quantified (see Section 5.5).

4.7 Concluding remarks
In this chapter it was demonstrated how normalised scores may be obtained
from feature sets, which are extracted according to the protocol outlined in
Chapter 3. Additionally, we elaborated on how said feature sets may be used
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to construct classifier ensembles. The base classifiers within a specific classifier
ensemble may subsequently be combined through score averaging or majority
voting. In the following chapter a detailed description of the data set under
consideration and the experimental protocol is provided, as well as an in-depth
analysis of the experimental results and the contribution of this research.



Chapter 5

Experiments

5.1 Introduction
The generic systems introduced in Chapters 3 and 4 utilise novel strategies
for the extraction of feature vectors geared towards the detection of textural
information and curved lines within an image. In order to gauge the overall
proficiency of the proposed generic systems, we implement said systems on
an offline signature database. We discuss the database that is considered for
experimental purposes in Section 5.2. In Section 5.3 we discuss the system
parameters employed for the purpose of experimentation and in Section 5.4
we elaborate on the experimental protocol. Finally, in Section 5.5 the experi-
mental results are reported and analysed.

5.2 Data
For the purpose of experimentation, we utilise signature data captured by Hans
Dolfing for his PhD thesis (Dolfing, 1998). This data was originally captured
online, but has subsequently been converted into ideal offline signatures with
a fixed stroke width and zero noise (Coetzer et al., 2004). The data set, that is
referred to as Dolfing’s data set, is comprised of signatures associated with 51
individual writers. Said data set contains 15 authentic training samples and 15
authentic test samples for each writer. In addition to this, it also contains 30
over-the-shoulder and 30 home-improved skilled forgeries associated with each
writer, with the exception of two writers for whom only 30 home-improved
forgeries are available per writer.

For the purpose of this thesis, only five of the 15 authentic training samples
per writer are employed for reference purposes. This ensures that the reported
results are realistic in terms of what may be achieved in practice.

An over-the-shoulder forgery is produced when the forger witnesses the pro-
duction of the actual signature and then imitates it, whereas a home-improved
forgery is produced when the forger is in possession of a sample of the actual

59



CHAPTER 5. EXPERIMENTS 60

signature and has sufficient time to practice imitating it. The offline versions
of the over-the-shoulder and home-improved forgeries are collectively referred
to as skilled forgeries within the context of this thesis. For the purpose of this
thesis, only skilled forgeries are considered for experimental purposes. Random
forgeries, which constitute imitations of a certain writer’s signature without
any prior knowledge of said signature, are not considered.

5.3 System parameters
A set of predefined parameters is required for experimental purposes. Since
these parameters influence the results, they are determined in such a way
that the best possible results are obtained while still rendering the systems as
efficient as possible.

A single parameter is predefined within the context of the MPT, namely
the number of evenly distributed origins, that is NMPT. A set of NMPT = 8
origins is specified for the purpose of textural pattern detection (Section 3.4.4),
while a set of NMPT = 16 origins is specified for the purpose of curved line
detection (Section 3.5).

Within the context of the SDRT, two parameters are predefined. The first
relates to the number of projection angles, which is defined as Nθ = 8. A set of
eight equally distributed projections angles are therefore specified as explained
in Section 3.2 so that θ ∈ [0◦, 180◦). An exception to this involves the special
case where the SDRT is applied to the MPT from a single projection angle of
θ = 90◦ for the purpose of detecting curved lines. The second parameter relates
to the feature vector dimension which is fixed at Vdim = 128. It was determined
in Swanepoel (2015) that said parameter value is optimal in the sense that a
larger value does not lead to a sufficient increase in system proficiency so as
to justify the accompanying loss in efficiency.

The predefined parameters within the context of the MDRT relate to the set
of projection angles, the feature vector dimension and the number of duplicates
to be appended to the original MPT. The number of projection angles is defined
as Nθ = 7, but within the context of the MDRT, the equally distributed
projection angles (as explained in Section 3.4.1) are restricted to the interval
θ ∈ (0◦, 90◦). The feature vector dimension is again defined as Vdim = 128,
and the number of duplicates to be appended is fixed at 3, as explained in
Section 3.4.3.

For the scenario where the SDRT is applied to the MPT from a single
projection angle of θ = 90◦ for the purpose of curved line detection, only one
additional parameter is predefined. This is the set of distances d from the
edge of the original image and the origin of the relevant MPT, as discussed
in Section 3.5. The set of distances is defined as d = {0 pixels, 70 pixels, 140
pixels, 210 pixels, 350 pixels}.



CHAPTER 5. EXPERIMENTS 61

5.4 Protocol
Dolfing’s data set is considered independently for each classifier, where each
classifier coincides with a unique feature set, as explained in Sections 4.1
and 4.2.

A global threshold is applied to all questioned samples in order to classify
them as either positive or negative. Questioned samples with a score larger
than or equal to the global threshold are classified as positive, otherwise they
are classified as negative. In order to find a realistic global threshold, the
experimental data is separated into an optimisation set and an evaluation
set. Said global threshold is determined by considering the optimisation set
and selecting the threshold that results in an equal error rate (EER) (see
Section 4.4). This threshold is subsequently applied to the evaluation set.

In order to ensure thorough experimentation and objective results, the
proposed systems are implemented on Dolfing’s data set by conducting 30
independent trials. These trials are conducted as follows,

• The 51 writers in Dolfing’s data set are randomly ordered 10 different
times, resulting in 10 different randomisations of the order of the writers.

• For each one of the aforementioned randomisations, the set of 51 writers
is divided into three subsets of 17 writers each. A unique set of writers
therefore constitutes a specific subset for each randomisation. Each one
of these subsets is considered in turn as the evaluation set with the
remaining two sets constituting the optimisation set.

The mean average error rate across all 30 trials, that is µAER, as defined in
Section 4.4, is subsequently reported for each individual classifier C1 to C22,
as well as for the combined classifiers C(s)

EII
, C(s)

EIII
, C(s)

EIV
, C(m)

EII
, C(m)

EIII
and C(m)

EIV
.

5.5 Results
The achieved results are categorised into writer-specific results (Section 5.5.1)
and results across all writers (Section 5.5.2). The writer-specific results indi-
cate the number of writers for which a specific classifier or set of classifiers
is the most proficient. The result across all writers enables one to gauge the
overall proficiency of each individual classifier, as well as the proficiency of
the combined classifiers. The aforementioned results may also be compared
to those for similar existing systems in order to place the proficiency of the
proposed systems into perspective. A statistical significance test is finally con-
ducted in order to determine whether the presented results (for the classifiers
proposed in this thesis) constitute a statistically significant improvement on
the existing benchmark system. Note that each of the ensembles, as defined
in Section 4.5, is associated with an independent system. The reported results
are therefore achieved by considering each ensemble independently.
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5.5.1 Writer-specific results

It is important to note that the results presented in this section are unre-
alistic within the context of a real-life scenario. For a specific classifier C,
the optimal local threshold that results in an EER is selected for each classi-
fier. The proficiency of said classifier in authenticating signatures associated
with a specific writer is subsequently quantified by said EER. The protocol
outlined in Section 5.4, that involves the application of a global threshold to
normalised scores and the partitioning of the data into an optimisation and
evaluation set, is therefore not adhered to. The sole purpose of this analy-
sis is to demonstrate that the base classifiers associated with ensembles other
than the benchmark EI = {C1} may be better suited than EI for authenticat-
ing signatures associated with specific writers. These results are presented in
Figures 5.1, 5.2 and 5.3.

Figure 5.1: Writer-specific results for ensemble EI = {C1} when compared to those
in ensemble EII = {C2, C3, C4, C5, C6, C7, C8}. The height of each bar represents
the number of individual writers for which a specific classifier is the most proficient.
The number of writers for which two or more classifiers, that include C1, are jointly
the most proficient, is represented by the height of the penultimate bar. The number
of writers for which two or more classifiers, that do not include C1, are jointly the
most proficient is represented by the height of the last bar.

From Figure 5.1 it is clear that ensemble EI = {C1} is the most proficient
for 6 writers, and jointly the most proficient for another 3 writers. This however
indicates that for each of the remaining 42 writers (84% of the total number
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Figure 5.2: Writer-specific results for ensemble EI = {C1} when compared to those
in ensemble EIII = {C9, C10, C11, C12, C13, C14, C15, C16}. The height of each
bar represents the number of individual writers for which a specific classifier is the
most proficient. The number of writers for which two or more classifiers, that include
C1, are jointly the most proficient, is represented by the height of the penultimate
bar. The number of writers for which two or more classifiers, that do not include
C1, are jointly the most proficient is represented by the height of the last bar.

of writers) one or more of the base classifiers within ensemble EII is the most
proficient.

From Figure 5.2 it is clear that ensemble EI = {C1} is the most proficient
for 9 writers, and jointly the most proficient for another 2 writers. This however
indicates that for each of the remaining 40 writers (80% of the total number
of writers) one or more of the base classifiers within ensemble EIII is the most
proficient.

From Figure 5.3 it is clear that ensemble EI = {C1} is the most proficient
for 17 writers, and jointly the most proficient for another 2 writers. This
however indicates that for each of the remaining 32 writers (64% of the total
number of writers) one or more of the other base classifiers within ensemble
EIV is the most proficient.

It may therefore be concluded that there is no scenario for which the SDRT-
based benchmark system EI = {C1} is the most proficient classifier for the
majority of writers. As mentioned before, these results are not achievable in
practice, but indicate that the implementation of the proposed systems may
lead to an improvement in overall proficiency.
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Figure 5.3: Writer-specific results for ensemble EI = {C1} when compared to those
in ensemble EIV = {C1, C17, C18, C19, C20, C21, C22}. Recall that classifier C1 is
included within ensemble EIV. The height of each bar represents the number of
individual writers for which a specific classifier is the most proficient. The number
of writers for which two or more classifiers, that include C1, are jointly the most
proficient, is represented by the height of the penultimate bar. The number of
writers for which two or more classifiers, that do not include C1, are jointly the most
proficient is represented by the height of the last bar.

5.5.2 Results across all writers

In this section realistic results are presented within the context of a real-life
scenario across all writers. The protocol outlined in Section 5.4 is therefore
strictly adhered to. Thirty independent trials are conducted by considering
Dolfing’s data set. The scores are normalised according to the protocol defined
in Section 4.3. During each trial, the data is partitioned into an optimisation
and an evaluation set. A global threshold is selected that results in an EER
across all of the writers in the optimisation set. Said threshold is subsequently
applied to all of the normalised scores associated with different writers in the
evaluation set. The mean AER, that is µAER, of the evaluation sets across all
trials are reported. The results are reported for the individual classifiers as
well as for the combined classifiers (using score averaging or majority voting)
within the respective ensembles (see Tables 5.1, 5.2, 5.3 and 5.4).

The result reported for C1 in Table 5.1 , that is µAER = 9.51%, constitutes
the proficiency of the SDRT-based benchmark system. We therefore aim to
improve upon the aforementioned result.

The results reported in Table 5.2 are based on the detection of textural
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Table 5.1: Result for ensemble EI.

Classifier C1

µAER(%) 9.51

Table 5.2: Results for ensemble EII.

Classifier C2 C3 C4 C5 C6 C7 C8 C
(s)
EII

C
(m)
EII

µAER(%) 10.40 10.10 8.68 8.75 10.22 9.61 10.57 8.22 6.10

patterns with specific periodicities. Note that the combined classifiers C(s)
EII

and C
(m)
EII

, with mean AERs of 8.22% and 6.10% respectively, are both more
proficient than C1, for which the mean AER is 9.51%. Also, note that C(m)

EII

outperforms C(s)
EII

, which may be attributed to the fact that score averaging
may not be the optimal strategy for combining the individual base classifiers
within an ensemble. All classifiers are awarded equal weights despite the fact
that certain classifiers are clearly superior to others. In the case of majority
voting the input of less proficient classifiers may be ignored if the final decision
reflects the opinion of the more proficient classifiers.

Table 5.3: Results for ensemble EIII.

Classifier C9 C10 C11 C12 C13 C14 C15 C16 C
(s)
EIII

C
(m)
EIII

µAER(%) 14.70 11.65 12.41 12.87 13.09 11.24 11.31 10.64 8.39 6.82

The results reported in Table 5.3 are based on the detection of textural
patterns with specific orientations. Note that the combined classifiers C(s)

EIII

and C
(m)
EIII

, with mean AERs of 8.39% and 6.82% respectively, are both more
proficient than C1, for which the mean AER is 9.51%. Also, note that C(m)

EIII

outperforms C(s)
EIII

, which may be attributed to the same rationale as the one
outlined within the context of Table 5.2.

Table 5.4: Results for ensemble EIV.

Classifier C1 C17 C18 C19 C20 C21 C22 C
(s)
EIV

C
(m)
EIV

µAER(%) 9.51 12.27 11.39 11.03 10.80 11.05 10.63 10.14 8.40
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The results reported in Table 5.4, are based on the detection of concentric
curved lines. Note that the combined classifier C(s)

EIV
, for which the mean AER

is 10.14%, does not outperform C1. The combined classifier C(m)
EIV

, for which
the mean AER is 8.40%, does however outperform C1, for which the mean
AER is 9.51%. The combined classifier C(m)

EIV
that employs majority voting

again outperforms the combined classifier C(s)
EIV

that employs score averaging.
Furthermore, it is clear from Tables 5.1, 5.2, 5.3 and 5.4 that the com-

bined classifiers associated with ensemble EII are the most proficient within
the context of either score averaging or majority voting. It may therefore be
concluded that those features geared towards the detection of textural informa-
tion based on specific textural periodicities are the most discriminative within
the context of this thesis.

5.5.3 Comparison to existing research

In order to gain some perspective on how the results reported in Section 5.5.2
compare to that of existing systems, the reader is referred to Table 5.5. Recall
that N represents the number of authentic reference signatures either utilised
as templates (as is the case for the systems proposed in this thesis) or employed
for the purpose of training statistical models (Coetzer et al. (2004), Panton
and Coetzer (2010), and Swanepoel (2015)). For a detailed discussion on the
training of statistical models, the reader is referred to Cohn et al. (1996). Recall
that Nθ represents the number of projection angles, while NMPT represents the
number of origins specified for the MPT and Vdim represents the feature vector
dimension.

Table 5.5: The mean AER for systems evaluated on Dolfing’s data set. The best
results for the systems proposed in this study are presented in boldface.

System N Nθ NMPT Vdim µAER(%)

Coetzer et al. (2004) 15 128 - 512 12.20

Panton and Coetzer (2010) 15 128 - 512 8.89

Swanepoel (2015) (QDS) 5 8 - 128 5.55

Swanepoel (2015) (SVMS) 5 8 - 128 6.06

Patterns based on textural periodicity (this study) 5 7 8 128 6.10

Patterns based on textural orientation (this study) 5 7 8 128 6.82

Concentric curved lines (this study) 5 1 16 128 8.40

Note that both of the systems proposed by Swanepoel (2015) are writer-
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independent, while the remaining systems, including those proposed in this the-
sis, are writer-dependent. Writer-independent systems have the advantage that
skilled forgeries may also be used for model training by considering so-called
guinea-pig writers (see Section 2.2.2). Within the context of writer-dependent
systems, the guinea-pig writers (those within the optimisation set) are merely
used to select an appropriate threshold. The more sophisticated and elegant
score fusion strategies employed by Swanepoel (2015) may further contribute
to the proficiency of the relevant systems. We intend to investigate similar
score fusion strategies for future work (see Section 6.2.2). It is evident from
Table 5.5 that the systems proposed in this thesis constitute an improvement
on the current state-of-the-art within the context of writer-dependent systems.

5.5.4 Statistical significance testing

The results reported in Sections 5.5.2 and 5.5.3 demonstrate that the systems
developed in this thesis outperform the current benchmark system EI = {C1}.
However, in order to demonstrate that said improvements in system proficiency
are statistically significant, a statistical significance test is required.

In order to conduct a t-test, two independent data sets with normal distri-
butions are required. We opt to perform a two-sample t-test at a significance
level of α = 0.05. The level of significance indicates the probability that the
null hypothesis is rejected when it is in fact true. For a detailed discussion on
the t-test, the reader is referred to Cressie and Whitford (1986) and Dowdy et
al. (2011).

Sample set A is defined as the set of 30 AERs obtained for ensemble EI

when 30 independent trials are conducted on Dolfing’s data set as explained
in Section 5.4. Sample set B is defined as the set of 30 AERs obtained for a
combined classifier C(s)

E or C(m)
E , as proposed in this thesis, which is obtained

through score averaging or majority voting respectively. Furthermore, µ(A)
AER is

defined as the population mean for set A, while µ(B)
AER is defined as the popu-

lation mean for set B. The t-test is employed in order to determine whether
the mean AER for ensemble EI (that is µ

(A)
AER) is significantly larger the mean

AER associated with C
(s)
E or C(m)

E (that is µ(B)
AER). A t-test is conducted for

ensembles EII and EIII, but not for ensemble EIV since EIV is not independent
of EI. The hypotheses considered are therefore as follows:

• Null hypothesis H0 : µ
(A)
AER − µ

(B)
AER ≤ 0

• Alternative hypothesis HA : µ
(A)
AER − µ

(B)
AER > 0

This therefore constitutes a right-tailed t-test, where the alternative hy-
pothesis indicates that a specific proposed system associated with sample set
B achieves a lower mean AER than the benchmark system, therefore implying
a statistically significant improvement in system proficiency.
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Let σ2
Y and nY respectively denote the population variance and population

size for an arbitrary sample set Y . The test statistic tstat is subsequently
obtained as follows,

tstat =
µ
(A)
AER − µ

(B)
AER

Q
, (5.1)

where

Q =

√(
(nA − 1)σ2

A + (nB − 1)σ2
B

nA + nB − 2

)(
1

nA
+

1

nB

)
. (5.2)

Note that within the context of the t-test conducted here, nA = nB = 30.
Therefore, Q may be simplified as follows,

Q =

√
σ2
A + σ2

B

30
(5.3)

In order to reject the null hypothesis at a significance level of α = 0.05 the
value of tstat (as obtained through the t-test) has to exceed a critical t-value,
tcrit, which is obtained from a so-called t-table. Therefore, in order to reject
the null hypothesis and deem the improvement in system proficiency to be
statistically significant the following must hold,

tstat > tcrit

= t(α,nA+nB−2)

= t(0.05,58)

= 1.671.

(5.4)

The results reported in Tables 5.6 and 5.7 indicate that when the individual
base classifiers within ensembles EII and EIII are combined through majority
voting, a statistically significant improvement in system proficiency over the
benchmark system EI is achieved. When the individual base classifiers within
ensembles EII and EIII are combined through score averaging, the improvement
in system proficiency is however not statistically significant. This reiterates
the conclusion reached earlier: score averaging does not constitute a sensible
classifier combination strategy within the context of the systems proposed in
this thesis.

Table 5.6: Statistics for a t-test, where sample set A contains the AERs associated
with ensemble EI and sample set B contains the AERs associated with ensemble
EII.

Classifier combination strategy tstat

Score averaging (C(s)
EII

) 0.54

Majority voting (C(m)
EII

) 2.69
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Table 5.7: Statistics for a t-test, where sample set A contains the AERs associated
with ensemble EI and sample set B contains the AERs associated with ensemble
EIII.

Classifier combination strategy tstat

Score averaging (C(s)
EIII

) 0.37

Majority voting (C(m)
EIII

) 1.91

5.6 Concluding remarks
Firstly, in this chapter writer-specific experiments were conducted on Dolf-
ing’s data set. The results indicated that for various individual writers one or
more of the base classifiers associated with the proposed systems outperform
the existing SDRT-based benchmark system. This led us to believe that the
proposed systems may also outperform the existing benchmark system across
all writers in a realistic scenario.

Experimental results across all writers were subsequently reported for the
individual classifiers, as well as for combined classifiers that employ score av-
eraging or majority voting. We concluded that all of the combined classifiers,
except for a combined classifier associated with ensemble EIV (when score av-
eraging is employed), outperform the SDRT-based benchmark system. We
furthermore concluded that classifier combination through majority voting is
consistently superior to score averaging.

Finally, it was shown that the majority voting-based combined classifiers
associated with ensembles EII and EIII significantly outperform the existing
SDRT-based benchmark system associated with ensemble EI. The superiority
of the corresponding combined classifiers obtained through score averaging is
however not statistically significant.

In the following chapter, avenues for potential future research are investi-
gated.



Chapter 6

Conclusion and future work

6.1 Conclusion
In this thesis generic systems were developed that improve upon an exist-
ing benchmark system. Said benchmark system employs features that are
based on the standard discrete Radon transform (SDRT) and is geared to-
wards the detection of straight lines within an image. The proposed systems
utilise novel feature extraction strategies that employ the SDRT in an indirect
way. The first strategy involves the utilisation of a normalised modified dis-
crete Radon transform (MDRT), which is applied to a multiresolution polar
transform (MPT) for the purpose of detecting textural patterns, based either
on their periodicity or their orientation. This is achieved via the construction
of suitable spirals. The second strategy constitutes a specific scenario for the
SDRT, where only one projection is calculated from an angle of 90◦. This
simplified version of the SDRT is also applied to a normalised MPT for the
purpose of detecting various concentric curved lines.

For the purpose of template matching, a dynamic time warping-based
(DTW-based) distance measure is employed. This facilitates the assignment
of scores to questioned samples.

The proposed systems are evaluated by estimating their ability in detect-
ing skilled forgeries within Dolfing’s data set that contains ideal handwritten
signatures from 51 writers. The results indicate that for each of the proposed
ensembles, the proficiency of the combined classifier that utilises majority vot-
ing is superior to that of the SDRT-based benchmark system. Said superiority
is statistically significant. Furthermore, when the proficiency of the proposed
systems are compared to those of existing writer-dependent systems within the
context of an ideal (noiseless) data set, the proposed systems are superior.

The objectives of this research, as outlined in Section 1.3, have therefore
been achieved. The value and contribution of the proposed feature extraction
protocol are further highlighted by a publication in peer-reviewed conference
proceedings (Fick et al., 2016). There is however room for improving the sys-
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tems proposed in this thesis. Possible avenues for future research are therefore
discussed in the following section.

6.2 Future work
Due to time constraints and restrictions on the scope of this thesis, certain
research avenues were not pursued. A discussion on viable future research
is therefore provided. Strategies for obtaining rotation invariant features are
put forward in Section 6.2.1, should this be required for a specific data set or
application. More sophisticated fusion strategies that may potentially further
improve system proficiency, are presented in Section 6.2.2. The systems devel-
oped in this thesis were evaluated within the context of skilled forgery detection
in a set of questioned offline handwritten signatures. The proposed systems are
however generic and may therefore be applied to various different data sets and
within a number of different authentication scenarios. Alternative data sets
and authentication scenarios are discussed in Sections 6.2.3 and 6.2.4, respec-
tively. In Section 6.2.5 possible alternatives to template matching (through
DTW) are presented. Possible adjustments to the system parameters are pre-
sented in Section 6.2.6. Finally, ways in which the efficiency of the proposed
systems may be improved are suggested in Section 6.2.7.

6.2.1 Rotation invariant features

In order to ensure that the proposed feature sets are suitable for other data sets
or authentication scenarios, it may be required that they are rendered rotation
invariant. The feature sets associated with the specific scenario where the
SDRT is applied to an MPT from a projection angle of 90◦, i.e. feature sets X17

to X22, are already rotation invariant, as explained in Section 3.6. In this
section we discuss how to obtain rotation invariant feature sets within the
context of the SDRT-based benchmark system, as well as for scenarios where
the MDRT is applied to an MPT.

Within the context of the SDRT-based benchmark system, each feature vec-
tor (column within the feature matrix X1) coincides with a specific projection
profile calculated from a predefined projection angle. In order to compensate
for rotational variations, the DTW-based distance between a specific reference
feature set and a shifted version of a questioned feature set may be calculated
as conceptualised in Figure 6.1. When a questioned feature set is shifted by
one column (feature vector) towards the right, the first feature vector is re-
placed by the last feature vector. The aforementioned wrap-around procedure
is facilitated by the periodic nature of the projection profiles when calculated
from projection angles in the interval θ ∈ [0◦, 360◦). Note that when the pro-
jection angles are restricted to the interval θ ∈ [0◦, 180◦), as is the case in this
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thesis, the first feature vector is replaced by the last feature vector after the
latter has been flipped in an up-down fashion (see Figure 6.1).

Whether the questioned feature set is shifted towards the left or right, is
determined by the direction of the rotation (clockwise or counterclockwise)
that is to be compensated for. The angle of rotation is determined by the
number of columns by which the questioned feature set is shifted. In Figure 6.1,
for example, the questioned feature set is shifted by one column towards the
right. Within the context of the protocol outlined in Section 3.1, assuming that
the projection angle increases when the column index increases, this implies
that the scenario depicted in Figure 6.1 compensates for a counterclockwise
rotation of 22.5◦. The range of possible rotations is also determined by the
range of the projection angles. Should the aim be to compensate for a rotation
of 10◦ within the range of [0◦, 360◦), 36 equally distributed angles within the
interval of θ ∈ [0◦, 360◦) have to be specified.

Although this protocol constitutes an effective strategy for constructing
rotation invariant features, it may impact negatively on the overall computa-
tional efficiency of the relevant systems.

In order to facilitate the construction of rotation invariant features within
the context of the MDRT being applied to an MPT, an alternative strategy
needs to be followed. The various subimages within a constructed composite
image (see Section 3.4.2) have to be rotated on an individual basis. This may
be achieved by rotating the original image (subimage within the constructed
composite image) according to the rotation that has to be compensated for.
Reflections of the rotated version of the original image are subsequently ap-
pended to the rotated original image.

Although this protocol will result in rotation invariant features, it once
again negatively affects the computational efficiency of the relevant systems,
since a new MPT has to be calculated for each rotation.

Since the MPTs of various orientations of the original image have already
been calculated, the DTW-based distance between a reference feature set and
a questioned feature set associated with a different orientation may simply be
calculated in order to compensate for rotational variations. This does however
limit the number of rotations that may be compensated for to the predefined
orientations. Computational efficiency is however still negatively impacted,
albeit to a lesser extent, due to the calculation of additional DTW-based dis-
tances.

6.2.2 More sophisticated classifier fusion strategies

When the oracle results for the proposed systems (as presented in Table 6.1)
are considered, it is clear that there is room for improvement. The oracle re-
sults refer to those obtained through determining the best classifier for each
individual writer in Dolfing’s data set. Said classifier is then exclusively em-
ployed for authenticating the questioned signatures claimed to belong to the
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Figure 6.1: A conceptualisation of how rotational variations may be compensated
for within the context of the SDRT-based benchmark system. The questioned feature
set is shifted a specified number of columns towards the left or right with respect to
the reference feature set. A wrap-around procedure is facilitated by the periodicity
of the projection angle in the interval θ ∈ [0◦, 360◦).

relevant writer. These results constitute the best obtainable results for the pro-
posed systems. Said oracle results are however not achievable in reality since
the best classifier for each individual writer is not known. They simply hint
at the possible improvements that may result from combining the proposed
individual base classifiers in an optimal way. Recall that ensembles EII, EIII

and EIV are defined in Section 4.5.

Table 6.1: Oracle results for ensembles EII, EIII and EIV.

Classifier ensemble EER (%)

EII 5.20

EIII 4.85

EIV 6.65
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As expected, for each of the classifier ensembles the oracle result is superior
to the results reported in Section 5.5. Although these results are not realistic,
they do indicate that more sophisticated fusion techniques may have a positive
impact on the proficiency of the proposed systems.

Classifier fusion techniques may be categorised into feature level, score
level and decision level fusion techniques. We now elaborate on score level and
decision level fusion within the context of possible future improvements to the
systems proposed in this thesis. Feature level fusion is however not discussed.

6.2.2.1 Score level fusion

Score level fusion techniques focus on combining the scores from various classi-
fiers into a single score, after which the combined score is used for classification
purposes. Said techniques typically involve the assignment of weights to the
scores of the individual classifiers. In the book by Ross et al. (2006) score fu-
sion is discussed in great detail. Score fusion is also employed and discussed by
Swanepoel and Coetzer (2010) and Swanepoel (2015). Score fusion techniques
can further be grouped into either static score fusion or dynamic score fusion
techniques.

Static score fusion involves the assignment of a weight to the score of every
individual classifier. Score averaging is an example of static score level fusion,
where equal weights are assigned to the scores of the individual classifiers. As
was shown in Section 5.5, score averaging is however not a good strategy for
combining individual scores. It is therefore more sensible to assign a weight
to each individual classifier according to its estimated proficiency when eval-
uated on samples within an optimisation set. The most proficient classifier
is typically assigned the largest weight. The aforementioned weights are sub-
sequently applied to the scores of questioned samples within an evaluation
set.

Within the context of dynamic score fusion, weights are assigned to the
scores of individual classifiers by extracting information from a specific ques-
tioned sample. This assignment therefore occurs during system implementa-
tion. The expected proficiency of a classifier may be quantified by some sort
of response associated with said classifier. Within the context of the SDRT,
the maximum projection value associated with a specific base classifier may,
for example, constitute such a response.

6.2.2.2 Decision level fusion

Decision level fusion techniques combine the decisions of various individual
classifiers in order to obtain an optimal, combined decision. Different weights
may be assigned to the decisions from different classifiers. Alternatively, cer-
tain classifiers may be selected, effectively ignoring the decisions from the
remaining classifiers. Decision level fusion strategies are discussed in detail in
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Ruta and Gabrys (2000), Moreno-Seco et al. (2006) and Ponti (2011). Simi-
lar to score fusion, decision level fusion may be categorised as either static or
dynamic (Valdovinos et al. (2005)).

Within the context of static decision level fusion, the decisions of the indi-
vidual base classifiers are combined by assigning larger weights to more profi-
cient classifiers. These weights are determined by considering an optimisation
set and remain subsequently unchanged (static) for all questioned samples in
the evaluation set. Alternatively, a subset of decisions associated with the most
proficient individual classifiers is selected, effectively ignoring the decisions of
the remaining classifiers. Majority voting constitutes a very specific example
of a static decision level fusion strategy which simply accepts the decision of
the majority of classifiers. Further investigation into decision level fusion is
therefore warranted.

Within the context of dynamic decision level fusion, various strategies may
be employed in order to determine the expected proficiency of an individual
classifier based on the specific questioned sample being investigated. Weights
are therefore assigned to the decisions of the individual base classifiers during
system implementation.

The feasibility of all of the strategies discussed in this section for improv-
ing the proficiency of the systems proposed in this thesis should therefore be
investigated.

6.2.3 Alternative data sets

The systems proposed in this thesis were evaluated by considering Dolfing’s
data set that contains ideal (noiseless) offline signatures with a fixed stroke
width. Since these systems are however expected to be robust in the presence
of moderate levels of noise, the following non-ideal (noisy) offline signature
data sets may also be considered for evaluation purposes in the future:

• The MCYT-SignatureOff-75 data set that contains a total of 1125 gen-
uine samples and 1125 skilled forgeries from 75 individual writers;

• The GPDS960 data set that contains offline signatures from 960 indi-
vidual writers, with 24 genuine samples and 30 skilled forgeries for each
writer.

Note that the proposed systems may be applied to binary or grey-scale images,
while alternative existing feature extraction techniques, like those based on the
Hough transform, are only applicable to binary images. The applicability of the
proposed systems to RGB images may also be investigated in future research.

Furthermore note that, although image pre-processing (noise removal) is
deemed to be outside the scope of this thesis, it should be incorporated as an
additional step when the above-mentioned noisy data sets are considered for
experimentation purposes. Even without pre-processing, the improvement in
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system proficiency associated with the systems proposed in this thesis when
compared to the SDRT-based benchmark system is expected to persist. How-
ever, since the systems proposed in this thesis were evaluated on ideal (noise-
less) data, one can not expect the proficiency of said systems to be unaffected
when evaluated on non-ideal data, unless noise is adequately removed.

The application of simple morphological operators or an adaptive median
filter to the images in the noisy data sets mentioned earlier may be sufficient
to remove noise in the majority of scenarios. The effectiveness of noise removal
does however depend on the type and density of noise. Morphological thinning
or the morphological dilation of a skeletonised signature constitute strategies
that may be investigated for obtaining a uniform stroke width. The afore-
mentioned adaptive median filter and morphological operators are discussed
in detail in Gonzales and Woods (2010). It is however important to note that
most morphological operators are only applicable to binary images. In the case
of grey-scale images, appropriate binarisation has to be performed beforehand.
A generic binarisation algorithm is detailed in Otsu (1979).

6.2.4 Alternative authentication scenarios

The proposed generic systems are well-suited for the recognition or verifica-
tion of all two-dimensional images that contain prominent curved lines. The
following authentication scenarios are therefore deemed suitable alternatives
to offline signature verification (the application investigated in this thesis):

• Other biometric applications, like hand-vein recognition, iris recognition,
ear recognition, etc;

• Health-related object detection;

• Vehicle-related object detection;

• Surveillance;

• Remote sensing.

In Figure 6.2 a number of images are presented that may, for example,
be used in future research for the purpose of object detection and/or authen-
tication. These examples are however not exhaustive. Note that, for some
of these images pre-processing and/or proper object segmentation may be re-
quired before the systems proposed in this thesis are applied for authentication
purposes.

6.2.5 Alternatives to template matching

In this thesis template matching is employed in order to quantify the dif-
ference between a reference sample and a questioned sample. This ultimately
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Figure 6.2: Examples of images associated with various authentication scenarios in
which the systems proposed in this thesis may be useful within the context of future
research.

enables the classification of questioned samples. In future research, alternative
techniques that facilitate accurate classification should however also be inves-
tigated within the framework of the feature extraction protocols proposed in
this thesis. Appropriate discriminative or generative statistical models may be
used for this purpose.

Discriminative models typically utilise decision boundaries to determine
the class to which a questioned sample belongs. Such boundaries are obtained
through finding parameters that classify samples in a training set in an optimal
way. Examples of such discriminative models include support vector machines
and neural networks.

Generative models, on the other hand, trains (through examples) the pa-
rameters for the probabilistic model of each distinct class. A questioned sam-
ple is therefore classified according to the probability distribution that it most
likely belongs to. Examples of generative models include Gaussian mixture
models and hidden Markov models.

6.2.6 Adjustment of system parameters

The proficiency of the proposed systems may be improved by adjusting the
system parameters defined in Section 5.3. The three parameters that may
have a significant effect on system proficiency are subsequently discussed.



CHAPTER 6. CONCLUSION AND FUTURE WORK 78

The number of origins chosen for the MPT NMPT may be increased in order
to improve system proficiency. Since the calculation of the MPTs is currently
the most costly component within the proposed systems, this may however
lead to a significant decrease in computational efficiency. Alternatively, the
number of projection angles Nθ may be increased within the context of the
SDRT-based benchmark system or in scenarios where the MDRT is applied
to an MPT. Since a maximum of eight projection angles is employed within
the context of the systems proposed in this thesis, there is ample scope for
improvement in system proficiency. Such an adjustment will however decrease
computational efficiency since it necessitates the concatenation of additional
duplicates of MPTs within the context of the MDRT. The set of distances d
that is specified for the scenario where the SDRT is applied to an MPT from
an angle of 90◦, may also be adjusted. A larger set of distances will inevitably
lead to a larger number of curvatures being detected. This will however also
decrease computational efficiency, as is the case for the other two potential
adjustments.

It is therefore clear that the potential adjustment of system parameters
depends on the principal objectives of the authentication scenario. Since there
is an inevitable trade-off between system proficiency and computational effi-
ciency, the most important objective will dictate how the system parameters
are specified.

6.2.7 Improved computational efficiency

Since the SDRT is deemed a very efficient feature extraction strategy, efforts in
improving the efficiency of the systems proposed in this thesis will focus on the
calculation of the various MPTs. In order to facilitate improved efficiency, the
calculation of a smaller number of MPTs should be considered. The MPTs of
the composite images (conceptualised in Section 3.4.2) may also be optimised.
This may however prove to be a challenging task since we originally set out to
extract as much information as possible from an input image.

It should therefore be clear that the work conducted in this thesis opens up a
wide range of future research opportunities.
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