2.7: Application 3: Compound interest

Problem: An amount of
$$P_0$$
 is invested at an
annual interest rate of x %. How much
money is in the account after t years?
Interest rate: $r = x\% = x/100$
With interest compounded annually:
Initially: $P(0) = P_0$
After 1 year: $P(1) = P_0 + rP_0 = (1+r)P_0$
After 2 years: $P(2) = (1+r)P(1) = (1+r)^2P_0$
After 3 years: $P(2) = (1+r)^3P_0$
:
After t years: $P(3) = (1+r)^3P_0$
:
After t years: $P(t) = (1+r)^tP_0$
With interest compounded biannually:
Initially: $P(0) = P_0$
After $\frac{1}{2}$ year: $P(\frac{1}{2}) = P_0 + \frac{r}{2}P_0 = (1+\frac{r}{2})P_0$
After 1 year: $P(1) = (1+\frac{r}{2})P(\frac{1}{2}) = (1+\frac{r}{2})^2 P_0$
:
After t years: $P(t) = (1+\frac{r}{2})^{2t} P_0$

With interest compounded quarterly: After t years: $P(t) = (1 + \frac{r}{4})^{4t} P_0$ With interest compounded daily: After *t* years: $P(t) = (1 + \frac{r}{365})^{365t} P_0$ With interest compounded continuously: After t years: $P(t) = \left(1 + \frac{r}{n}\right)^{nt} P_0$, with $n \to \infty$ $= \lim_{n \to \infty} \left(1 + \frac{r}{r} \right)^{nt} P_0$ Set: $y = \left(1 + \frac{r}{n}\right)^{nt}$ and $s = r/n \Rightarrow n = r/s$ $\Rightarrow \quad y = \left[(1+s)^{1/s} \right]^{rt}$ If $n \to \infty$, then $s \to 0$ (r is constant) $\Rightarrow \lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^{nt} = \lim_{s \to 0} \left[(1+s)^{1/s} \right]^{rt}$ $= \left[\lim_{s \to 0} (1+s)^{1/s}\right]^{rt}$

Let
$$f = (1+s)^{1/s}$$
 so that $\ln f = \frac{\ln(1+s)}{s}$

$$\Rightarrow \lim_{s \to 0} \ln f = \lim_{s \to 0} \frac{\ln(1+s)}{s}$$

$$= \lim_{s \to 0} \frac{1}{1+s} \text{ (L'Hopital)}$$

$$= 1$$

$$\Rightarrow e^{\lim_{s \to 0} \ln f} = \lim_{s \to 0} e^{\ln f} = \lim_{s \to 0} f = e^1 = e$$

$$\Rightarrow \lim_{s \to 0} (1+s)^{1/s} = e$$

$$\Rightarrow \lim_{s \to \infty} \left(1 + \frac{r}{n}\right)^{nt} = \left[\lim_{s \to 0} (1+s)^{1/s}\right]^{rt}$$

$$= e^{rt}$$

 \Rightarrow For interest compounded cont'ly: $P(t) = P_0 e^{rt}$ This satisfies the DE:

$$rac{dP}{dt}=rP$$
 with $P(0)=P_0$

Tr 3

Example: An amount of R 1000 is invested for 3 years at an annual interest rate of 6%. How much is it worth: (a) when the interest is compounded annually, and (b) when the interest is compounded continuously?

Answers: (a) R 1191 (b) R 1197

(SELF STUDY) **Application 4:** Newton's law of cooling (pp 20 & 75)