
Chapter 1

Probability

This chapter will provide the necessary background in probability theory that we need to
formulate the models of investments we will discuss later in the course. Some of it should be
familiar, some of it won’t.

1.1 Basic probability theory

Consider an experiment such as tossing a coin or throwing a die. The set of all possible
outcomes is called the sample space. We shall often, but not always, use S to denote sample
spaces.

Example 1.1. Flipping a coin. The outcome is either H (for heads) or T (for tails). The
sample space is

S = {H, T} .

Example 1.2. Flipping a coin twice. The outcome is either H followed by H, H followed by
T, T followed by H, or T followed by T. The sample space is

S = {HH,HT, TH, TT} .

Let S be a sample space with n elements, say S = {1, . . . , n}. Suppose we are given n
real numbers pi, i = 1, . . . , n, such that

(i) pi ≥ 0 for every i ∈ S;

(ii)
∑n

i=1 pi = 1.

We can then interpret pi to be the likelihood of the outcome i, for any i ∈ S, and we shall
say that the pi’s define a probability measure on S.

Example 1.3. In Example 1.1 above, we could have chosen pH = pT = 1
2
, or pH = 1

3
, pT = 2

3
.

In Example 1.2 above, we could have chosen pHH = pHT = pTH = pTT = 1
4
.

A subset of the sample space S is called an event. If A is an event, then we define the
probability of A occurring, denoted by P (A), by

P (A) =
∑

i∈A

pi .

Note that, in particular, P (S) =
∑

i∈S pi = 1.

5
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Example 1.4. Let a, b, c be three companies. Let (i, j, k) be the outcome that in 2010
company i makes more profit than company j and that company j makes more profit than
company k. Then the sample space is

S = {(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a)} .

Define a probability measure on S by letting

p(i,j,k) =
1

6
for every i, j, k.

Let A be the event that a makes most profit in 2010. Then A = {(a, b, c), (a, c, b)} and
P (A) = 1

6
+ 1

6
= 1

3
.

Suppose that S is a sample space and that A ⊂ S and B ⊂ S are two events. Let us
recall the following definitions.

• The complement of the event A, denoted by A′ or A, is given by

A′ = { s ∈ S | s 6∈ A } .

• The union A ∪B of the events A and B is given by

A ∪B = { s ∈ S | s ∈ A or s ∈ B or both } .

• The intersection A ∩B of the events A and B is given by

A ∩B = { s ∈ S | s ∈ A and s ∈ B } .

Note that

• P (A ∪B) is the probability that at least one of A or B occurs;

• P (A ∩B) is the probability that both A and B occur.

Example 1.5. Profits of companies (Example 1.4) continued. Let A be the event that
company a makes most profit and let B be the event that company c makes least profit. Then

A = {(a, b, c), (a, c, b)} and B = {(a, b, c), (b, a, c)} .

We have A ∪ B = {(a, b, c), (a, c, b), (b, a, c)} and A ∩ B = {(a, b, c)}. Moreover P (A) =
P (B) = 2

6
= 1

3
, P (A ∪B) = 3

6
= 1

2
, and P (A ∩B) = 1

6
.

We now recall a useful result that relates P (A ∩B) and P (A ∪B).

Theorem 1.6. For two events A and B

P (A ∪B) = P (A) + P (B)− P (A ∩B) .

Example 1.7. In Example 1.5 above we have

P (A ∪B) =
1

2
=

1

3
+

1

3
− 1

6
= P (A) + P (B)− P (A ∩B) .
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Example 1.8. Let the probability that the FTSE100 increases today be 0.52 and the prob-
ability that it increases tomorrow be 0.52 as well. Suppose that the probability it increases
both today and tomorrow is 0.28. What is the probability that the FTSE100 increases neither
today nor tomorrow?

Solution. Let A be the event that the FTSE100 increases today and let B be the event that the
FTSE100 increases tomorrow. We know that P (A) = P (B) = 0.52, that P (A ∩ B) = 0.28
and we want to find P ((A ∪ B)′). Now P (A ∪ B) = P (A) + P (B)− P (A ∩ B) = 0.76, so
P ((A ∪B)′) = 1− 0.76 = 0.24 is the desired probability that the FTSE100 increases neither
today nor tomorrow.

Recall that if A and B are events, then the conditional probability of A given B, denoted
P (A|B), is given by

P (A|B) =
P (A ∩B)

P (B)
.

Example 1.9. Profits of companies (Example 1.5) continued. If A is the event that a makes
most profit and B the event that c makes least profit, what is the probability that a makes
most profit given that c makes least profit?

Solution.

P (A|B) =
P (A ∩B)

P (B)
=

1/6

1/3
=

1

2

is the desired probability that a makes most profit given that c makes least profit.

We say that two events A and B are independent if

P (A|B) = B(A) ,

or, equivalently, if
P (A ∩B) = P (A)P (B) .

Example 1.10. In Example 1.9 above, the two events A and B are dependent (that is, not
independent), since P (A|B) = 1

2
> P (A).

1.2 Random variables

Definition 1.11. A random variable is a quantity X determined by the outcome of an
experiment. It is given by the following data:

(i) possible values x1, . . . , xn it can take on;

(ii) probabilities p1, . . . , pn.

We interpret pi = P (X = xi) to be the likelihood with which X takes the value xi. The
collection of the pi’s is referred to as the probability distribution of the random variable X.

Recall that if X is a random variable as defined above, then its expectation, denoted by
E(X), is given by

E(X) =
n∑

i=1

xipi =
n∑

i=1

xiP (X = xi) .
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Example 1.12. Suppose that a certain company

• makes £1,000,000 with probability 1
4
;

• loses £500,000 with probability 1
4
;

• makes £2,000,000 with probability 1
2
.

If X denotes the profit of the company in pounds, then X is a random variable with

x1 = 1000000 p1 =
1

4

x2 = −500000 p2 =
1

4

x3 = 2000000 p3 =
1

2

In particular, the expected profit of the company in pounds is given by

E(X) = x1p1 + x2p2 + x3p3 = 1125000 .

Definition 1.13. Let p ∈ [0, 1]. A random variable X is said to Bernoulli(p) (or simply
Bernoulli) distributed if its possible values are 0 and 1, and if P (X = 1) = p and P (X =
0) = 1− p.

Note that if X is Bernoulli(p) distributed then E(X) = 1 · p + 0 · (1− p) = p.
Expectation is linear in the following sense:

Lemma 1.14. Let X be a random variable and let a and b be constants. Then

E(aX + b) = aE(X) + b .

Proof. Suppose that X takes on the value xi with probability pi. Then aX + b is a random
variable which takes on the values axi + b with probability pi. Thus

E(aX + b) =
n∑

i=1

(axi + b)pi = a
n∑

i=1

xi + b
n∑

i=1

pi = aE(X) + b .

Repeated application of the lemma above yields the following important result.

Proposition 1.15. If X1, . . . , Xm are random variables and α1, . . . , αm are constants, then

E(
m∑

j=1

αjXj) =
m∑

j=1

αjE(Xj) .

Definition 1.16. The variance of a random variable X is given by

Var(X) = E((X2 − E(X))2) .

The standard deviation of a random variable is given by

σ(X) =
√

Var(X) .
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The following result is often useful.

Lemma 1.17. If X is a random variable, then

Var(X) = E(X2)− E(X)2 .

Proof. Using the linearity of the expectation we see that

Var(X) = E((X − E(X))2)

= E(X2 − 2XE(X) + E(X)2)

= E(X2)− 2E(X)E(X) + E(E(X)2)

= E(X2)− 2E(X)2 + E(X)2

= E(X2)− E(X)2 .

Example 1.18. Let X be Bernoulli(p) distributed. Then E(X) = p and

E(X2) = 12p + 02(1− p) = p ,

so

Var(X) = E(X2)− E(X)2 = p− p2 = p(1− p) .

Unlike expectation, variance is not linear as the following result shows.

Lemma 1.19. If X is a random variable and a and b are constants, then

Var(aX + b) = a2Var(X) .

Proof. This is a short calculation using the definition of variance and is left as an exercise.

While variance is not linear in general, it is sometimes possible to conclude that the variance
of a sum of two random variables is the sum of the variances of the random variables. Before
stating this result we recall the following important concept.

Definition 1.20. Two random variables X and Y are said to be independent if

P (X = xi, Y = yi) = P (X = xi)P (Y = yi) .

Furthermore, a sequence of random variables X1, X2, . . . is said to be independent if Xi and
Xj are independent whenever i 6= j.

The result alluded to earlier can now be formulated as follows.

Proposition 1.21. If X1, X2, . . . , Xm is a sequence of independent random variables, then

Var

(
m∑

j=1

Xj

)

=
m∑

j=1

Var(Xj) .

Proof. This will follow from a more general result to be discussed shortly (see Proposi-
tion 1.27).
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Another concept that you have already encountered and that will play an important role
later on is the following. A random walk is a sum of independent random variables. To
be precise, suppose that X1, X2, . . . is a sequence of random variables with the following
properties:

• P (Xj = 1) = P (Xj = −1) = 1
2

for all j;

• the random variables X1, X2, . . . are independent.

We can think of Xj as the j-th step of the random walk. Now define:

Sn =
n∑

j=1

Xj .

Then Sn is a random walk.
Note that

E(Xj) = 1
1

2
+ (−1)

1

2
= 0 ,

so
E(Sn) = E(X1) + · · ·E(Xn) = 0 .

In order to determine the variance of Sn note that

E(X2
j ) = 12 1

2
+ (−1)2 1

2
= 1 ,

so
Var(Xj) = E(X2

j )− E(Xj)
2 = 1− 02 = 1 ,

and thus, by Proposition 1.21

Var(Sn) = Var(X1) + · · ·Var(Xn) = 1 + · · ·+ 1 = n .

Recall that the covariance of two random variables X and Y is defined by

Cov(X, Y ) = E((X − E(X))(Y − E(Y ))) .

Note that Cov(X, Y ) = Cov(Y,X) and that Cov(X, X) = Var(X). The following is a useful
reformulation, the simple proof which is left as an exercise.

Lemma 1.22. Let X and Y be two random variables. Then

Cov(X, Y ) = E(XY )− E(X)E(Y ) .

Covariance turns out to be linear in each of its arguments. We shall consider a special
case first.

Lemma 1.23. Let X1, X2 and Y be three random variables. Then

Cov(X1 + X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ) .

Proof. Using the previous lemma and the linearity of expectation we see that

Cov(X1 + X2, Y ) = E((X1 + X2)Y )− E(X1 + X2)E(Y )

= E(X1Y + X2Y )− (E(X1) + E(X2))E(Y )

= E(X1Y ) + E(X2Y )− E(X1)E(Y )− E(X2)E(Y )

= E(X1Y )− E(X1)E(Y ) + E(X2Y )− E(X2)E(Y )

= Cov(X1, Y ) + Cov(X2, Y ) .



1.2. RANDOM VARIABLES 11

Repeated application of the previous lemma, together with the fact that Cov(X, Y ) =
Cov(Y,X) yields the following result.

Proposition 1.24. Let Xi, i = 1, 2, . . . ,m and Yj, j = 1, 2, . . . n be two sequences of random
variables. Then

Cov

(
m∑

i=1

Xi,
n∑

j=1

Yj

)

=
m∑

i=1

n∑

j=1

Cov(Xi, Yj).

Proof. See Exercise 3 on Coursework 1.

The correlation of two random variables X and Y is given by

Cor(X, Y ) =
Cov(X, Y )

σ(X)σ(Y )
.

It is a non-trivial fact that
−1 ≤ Cor(X, Y ) ≤ 1 .

We now recall that two random variables X and Y are said to uncorrelated if

Cov(X, Y ) = 0 .

Lemma 1.25. If two random variables X and Y are independent, then they are uncorrelated.

Proof. Suppose that X and Y are independent and that X takes on values x1, . . . , xm while
Y takes on values y1, . . . , yn. Then

E(XY ) =
m∑

i=1

n∑

j=1

xiyjP (X = xi, Y = yj)

=
m∑

i=1

n∑

j=1

xiyjP (X = xi)P (Y = yj)

=
m∑

i=1

xiP (X = xi)
n∑

j=1

yjP (Y = yj)

= E(X)E(Y ) .

Thus Cov(X, Y ) = E(XY )− E(X)E(Y ) = E(X)E(Y )− E(X)E(Y ) = 0.

Note that the converse of the lemma is false, that is, X and Y uncorrelated does not imply
that X and Y are independent, as the following example shows.

Example 1.26. Let X be a random variable taking on values 1, 0,−1 and let Y be a random
variable taking on values 1, 0. Suppose that

P (X = 1, Y = 1) = P (X = −1, Y = 1) = P (X = 0, Y = 0) =
1

3

and that the remaining joint probabilities are all 0. Thus

P (X = 1) = P (X = 0) = P (X = −1) =
1

3

and

P (Y = 1) =
2

3
, P (Y = 0) =

1

3
.
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Now

E(X) = 1 · 1
3

+ 0 · 1
3

+ (−1) · 1
3

= 0 ,

while

E(XY ) = 1 · 1 · 1
3

+ (−1) · 1 · 1
3

+ 0 · 0 · 1
3

= 0 .

Thus Cov(X, Y ) = E(XY ) − E(X)E(Y ) = 0, so X and Y are uncorrelated. However, X
and Y are not independent since

P (X = 0, Y = 0) =
1

3
6= 1

9
= P (X = 0)P (Y = 0) .

Proposition 1.27. Given a sequence X1, X2, . . . , Xn of random variables we have

Var

(
n∑

i=1

Xi

)

=
n∑

i=1

n∑

j=1

Cov(Xi, Xj) .

If the random variables X1, X2, . . . , Xn are mutually uncorrelated (that is Xi and Xj are
uncorrelated whenever i 6= j), then

Var

(
n∑

i=1

Xi

)

=
n∑

i=1

Cov(Xi, Xi) =
n∑

i=1

Var(Xi) .

Proof. Follows from Proposition 1.24.

1.3 Continuous random variables

Recall that a continuous random variable X takes values in R and is associated with a
probability density function (abbreviated ‘pdf’), that is, an integrable function fX on R

such that

(i) fX(x) ≥ 0, for every x ∈ R;

(ii)
∫∞
−∞ fX(x) dx = 1.

If a and b are real numbers with a ≤ b we interpret
∫ b

a
fX(x) dx to be the likelihood that X

takes on values between a and b, that is,

P (a ≤ X ≤ b) =

∫ b

a

fX(x) dx .

Recall that if X is a continuous random variable the expectation E(X) of X is given by

E(X) =

∫ ∞

−∞
xfX(x) dx ,

while the variance of X is given by

Var(X) = E(X2)− E(X)2 =

∫ ∞

−∞
x2fX(x) dx−

(∫ ∞

−∞
xfX(x) dx

)2

.

whenever these quantities are finite.
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If X is a random variable and n is a positive integer, we say that the n-th moment of X
exists if

E(|X|n) <∞ .

If the n-th moment exists we call E(Xn) the n-th moment of X. In particular, the first
moment of a random variable equals its expectation (if it exists).

Example 1.28. Let A > 0 and let X be a random variable such that

fX(t) =
A

π2A2 + t2
.

If this is the case we say that X has a Cauchy distribution. Note that fX(x) ≥ 0 for any
real x. Moreover, using the substitution x = πA tan θ, we see that

∫ ∞

−∞
fX(x) dx =

∫ ∞

−∞

A

π2A2 + x2
dx =

∫ π

2

−π

2

A

π2A2 + π2A2 tan2 θ
πA sec2 θ dθ

=

∫ π

2

−π

2

πA2 sec2 θ

π2A2 sec2 θ
dθ =

∫ π

2

−π

2

1

π
dθ = π

1

π
= 1 ,

so fX is a proper pdf.
It turns out that the second moment of the Cauchy distribution does not exist. To see this

note that

lim
x→∞

x2fX(x) = lim
x→∞

Ax2

π2A + x2
= lim

x→∞

A
π2A
x2 + 1

=
A

1
= A ,

so

E(|X|2) =

∫ ∞

−∞
x2fX(x) dx = ∞ ,

that is, the second moment of X does not exist. In fact, the first moment does not exist
either. In order to see this note that

lim
x→∞

x A
π2A2+x2

A
x

= 1 ,

so

E(|X|) =

∫ ∞

−∞
|x| fX(x) dx = 2

∫ ∞

0

x
A

π2A2 + x2
dx ≈

∫ ∞

0

A

x
dx = ∞ ,

because
∫

1
x
dx = log x →∞ as x →∞.

We now recall the following important concept.

Definition 1.29. The characteristic function GX of a random variable X is defined for any
α ∈ R by

GX(α) = E(eiαX) =

∫ ∞

−∞
eiαxfX(x) dx .

Knowing the characteristic function of a random variable makes it possible to calculate its
moments, as the following result shows.

Lemma 1.30. Given a random variable X with characteristic function GX we have for any
α ∈ R

GX(α) = 1 +
∞∑

k=1

(iα)k

k!
E(Xk) .
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Proof. Observe that

GX(α) =

∫ ∞

−∞
eiαxfX(x) dx =

∫ ∞

−∞

∞∑

k=0

(iαx)k

k!
fX(x) dx

=
∞∑

k=0

(iα)k

k!

∫ ∞

−∞
xkfX(x) dx = 1 +

∞∑

k=1

(iα)k

k!
E(Xk) .

Example 1.31. Suppose that X ∼ Uniform(0, 1), that is, X is a random variable with

fX(x) =

{

1 if 0 ≤ x ≤ 1

0 otherwise

Then

GX(α) =

∫ ∞

−∞
eiαxfX(x) dx =

∫ 1

0

eiαx =

[
eiαx

iα

]x=1

x=0

=
eiα − 1

iα
.

Now,

GX(α) =
1

iα

(
∞∑

k=0

(iα)k

k!
− 1

)

=
1

iα

∞∑

k=1

(iα)k

k!
=

∞∑

k=0

(iα)k

(k + 1)!
= 1 +

∞∑

k=1

(iα)k

k!

1

k + 1
.

Using the previous lemma we see that

E(Xk) =
1

k + 1
.

Note that we could also have calculated the moments directly:

E(Xk) =

∫ ∞

−∞
xkfX(x) dx =

∫ 1

0

xk dx =

[
1

k + 1
xk+1

]x=1

x=0

=
1

k + 1
.

Recall that the joint probability distribution function of two continuous random vari-
ables X and Y is denoted by fX,Y and has the property that for every a ≤ b and every
c ≤ d

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a

fX,Y (x, y) dx dy .

In particular

P (a ≤ X ≤ b,−∞ ≤ Y ≤ ∞) =

∫ ∞

−∞

∫ b

a

fX,Y (x, y) dx dy ,

so

P (a ≤ X ≤ b) =

∫ b

a

∫ ∞

∞
fX,Y (x, y) dy dx ,

hence

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy .

Similarly

fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx .

It turns out that two continuous random variables are independent if and only if their joint
probability distribution function factorises. To be precise:

Lemma 1.32. Two continuous random variables X and Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y) ∀x, y ∈ R .
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1.4 Gaussian or normal random variables

A random variable X is said to be Gaussian or normal with mean µ and variance σ2 where
µ ∈ R and σ > 0 if X has pdf

fX(x) =
1√
2πσ

exp

(

−(x− µ)2

2σ2

)

.

If X is normal with parameters µ and σ2 we write X ∼ N(µ, σ). It turns out that

E(X) = µ and Var(X) = σ2 .

Furthermore, it turns out that the sum of two independent Gaussian random variables is again
a Gaussian random variable. To be precise we have the following important result.

Lemma 1.33. Suppose that X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2). If X1 and X2 are

independent then
X1 + X2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2) .

If µ = 0 and σ = 1, we say that X is standard normal, in which case

fX(x) =
1√
2π

exp

(

−x2

2

)

.

Note that every normal random variable can be transformed to a standard normal random
variable as follows.

Lemma 1.34. If X ∼ N(µ, σ2) then

X − µ

σ
∼ N(0, 1) .

Proof. See Remark 1.40.

The cumulative distribution function of a standard normal random variable is defined
to be

Φ(x) =

∫ x

−∞

1√
2π

exp

(

−t2

2

)

dt .

Note that if X ∼ N(0, 1), then Φ(x) = P (X ≤ x). Note also that

Φ(x) = P (X ≤ x) = P (X ≥ −x) = 1− P (X ≤ −x) = 1− Φ(−x) . (1.1)

Moreover, if a ≤ b then

P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a) = Φ(b)− Φ(a) .

The function Φ cannot be expressed in terms of elementary functions. In this module
we will use tables to determine the values of Φ. Using relation (1.1) we see that Φ(x) only
needs to be tabulated for x > 0. In the table distributed in the lectures, Φ(x) is tabulated for
arguments x, correct to 2 decimal places. If higher precision is required linear interpolation
can be used. This is done as follows.

Suppose that x < x < x, where x and x are the nearest tabulated arguments of Φ. Then
a good approximation to Φ(x) is given by

Φ(x) ≈ x− x

x− x
Φ(x) +

x− x

x− x
Φ(x) .



16 CHAPTER 1. PROBABILITY

Example 1.35. Let x = 1.116. Then x = 1.11 and x = 1.12 and a good approximation of
Φ(x) is

Φ(x) ≈ 0.4Φ(1.11) + 0.6Φ(1.12) = 0.4 · 0.8665 + 0.6 · 0.8686 = 0.8678 .

Example 1.36. IQ scores of 11 year olds are normally distributed with mean value 100 and
standard deviation 14.2. What is the probability that a randomly chosen 11 year has IQ more
than 130?

Solution. Let X be the IQ of a randomly chosen 11 year old. We know that X ∼ N(µ, σ2),
where µ = 100 and σ2 = (14.2)2. Now

P (X > 130) = P

(
X − µ

σ
>

130− µ

σ

)

= P

(
X − µ

σ
> 2.113

)

= 1− Φ(2.113) .

In order to determine Φ(2.113) we use linear interpolation. The nearest tabulated arguments
are x = 2.11 and x = 2.12 and a good approximation to Φ(2.113) is

Φ(2.113) ≈ 0.7Φ(2.11) + 0.3Φ(2.12) = 0.7 · 0.9826 + 0.3 · 0.9830 = 0.9827 .

Thus, the desired probability is

P (X > 130) = 1− Φ(2.113) = 0.017 .

Note 1.37. You only need to use linear interpolation if you are specifically asked to do so.

Our next task is to derive the transformation formula for the probability distribution func-
tions of continuous random variables. Before doing so recall that if X is a continuous random
variable with pdf fX , its cumulative distribution function, denoted FX and abbreviated
cdf, is defined to be

FX(x) =

∫ x

−∞
fX(t) dt .

Note that by the fundamental theorem of calculus

d

dx
FX(x) = fX(x) .

Suppose now that X is a continuous random variable and g a real valued function. We are
now going to answer the question how the pdf of the random variable Y = g(X) is related to
that of X.

Theorem 1.38 (Transformation Formula). Let X be a continuous random variable and let
Y = g(X), where g is a differentiable function which is

(i) either strictly monotonically increasing (so g′(x) > 0 ∀x ∈ R)

(ii) or strictly monotonically decreasing (so g′(x) < 0 ∀x ∈ R).

Then

fY (y) =

{

fX(g−1(y))
∣
∣
∣

d
dy

g−1(y)
∣
∣
∣ for all y for which g−1(y) exists

0 for all other y
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Proof. We give the proof for strictly monotonically increasing g only. The other case is similar.
We start by calculating the cdf of Y :

FY (y) =

∫ y

−∞
fY (y) dy = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y)) .

Now

fY (y) =
d

dy
FY (y) =

d

dy
FX(g−1(y)) = F ′X(g−1(y))

d

dy
g−1(y) ,

by the chain rule. Observe that since g is monotonically increasing, so is g−1. Thus, for all y
for which g−1(y) exists

fY (y) = fX(g−1(y))
d

dy
g−1(y) = fX(g−1(y))

∣
∣
∣
∣

d

dy
g−1(y)

∣
∣
∣
∣

,

since
d

dy
g−1(y) > 0 .

On the other hand, FY (y) is either 0 or 1 for all y for which g−1(y) does not exist, so fY (y) = 0
in this case.

Example 1.39. Suppose that X ∼ N(µ, σ2) and let a and b be real constants with a 6= 0.
Let Y = aX + b. What is the pdf of Y ?

Solution. Write g(x) = ax + b. Then Y = g(X). Note that g′(x) = a, so g is strictly
monotonically increasing if a > 0 and strictly monotonically decreasing if a < 0. Now, if
y = ax + b, then x = (y − b)/a, so

g−1(y) =
y − b

a
,

and
d

dy
g−1(y) =

1

a
.

Moreover, since X ∼ N(µ, σ2),

fX(x) =
1√
2πσ

exp

(

−(x− µ)2

2σ2

)

.

Using the Transformation Formula we see that

fY (y) =
1√
2πσ

exp

(

−((y − b)/a− µ)2

2σ2

) ∣
∣
∣
∣

1

a

∣
∣
∣
∣
=

1√
2π |a|σ

exp

(

−((y − aµ− b)2

2a2σ2

)

.

Thus
Y ∼ N(aµ + b, a2σ2) .

Remark 1.40. The above example also shows that if X ∼ N(µ, σ2), then

1

σ
X +

(

−µ

σ

)

∼ N

(
1

σ
µ +

(

−µ

σ

)

,
1

σ2
σ2

)

,

that is
X − µ

σ
∼ N(0, 1) .
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1.5 Lognormal random variables

Lognormal random variables are a particular type of continuous random variables that occur
in a number of practical applications.

Definition 1.41. A random variable Y is said to be lognormal with parameters µ and σ2

where µ ∈ R and σ > 0, if
log Y ∼ N(µ, σ2) .

We write
Y ∼ LogNormal(µ, σ2) .

Note that if Y ∼ LogNormal(µ, σ2), then Y = exp(X), where X ∼ N(µ, σ2).
We will now use the Transformation Formula to determine the pdf of a lognormal random

variable.

Proposition 1.42. If Y ∼ LogNormal(µ, σ2) then

fY (y) =

{
1√

2πσy
exp

(

− (log y−µ)2

2σ2

)

if y > 0;

0 if y ≤ 0.

Proof. Write g(x) = ex. Then Y = g(X). Now, if y = ex, then x = log y, so

g−1(y) = log y for y > 0 ,

and
d

dy
g−1(y) =

1

y
for y > 0 .

Moreover, since X ∼ N(µ, σ2),

fX(x) =
1√
2πσ

exp

(

−(x− µ)2

2σ2

)

.

Using the Transformation Formula we see that if y > 0 then

fY (y) = fX(log y)
1

y
=

1√
2πσy

exp

(

−(log y − µ)2

2σ2

)

,

while fY (y) = 0 if y ≤ 0.

In Coursework 2 you will be asked to prove the following useful results.

Proposition 1.43. Let Y ∼ LogNormal(µ, σ2). Then

E(Y ) = exp(µ +
1

2
σ2) and Var(Y ) = exp(2µ + σ2)(eσ2 − 1) .

Proof. See Exercise 4, Coursework 2.

Note that we can calculate the cdf of a lognormally distributed random variable using the
table for Φ.

Example 1.44. Suppose Y ∼ LogNormal(µ, σ2) with µ = 0.20 and σ = 0.50. Determine y
such that P (Y ≤ y) = 0.95.
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Solution. Note that P (Y ≤ y) = P (log Y ≤ log y) where log Y ∼ N(µ, σ2). Thus

0.95 = P (Y ≤ y) = P (log Y ≤ log y) = P

(
log Y − µ

σ
≤ log y − µ

σ

)

= Φ

(
log y − µ

σ

)

.

From the table for Φ we see that

log y − µ

σ
= 1.645 ,

so
y = exp(µ + 1.645σ) = 2.78 .

1.6 The IID lognormal model

This is our first model of stock market prices. Let S(n) denote the price of some product
at the end of n time periods, where n is a non-negative integer. The model assumes that
S(n)/S(n − 1), where n ∈ N, is a sequence of independent identically distributed random
variables with common distribution

S(n)

S(n− 1)
∼ LogNormal(µ, σ2) .

Note that the model makes an assumption about the relative price changes S(n)/S(n − 1)
from one time period to the next. In practice one is interested in the distribution of the relative
price change S(n)/S(0).

Lemma 1.45. If S(n) is given by the IID lognormal model, then

S(n)

S(0)
∼ LogNormal(nµ, nσ2) for any n ∈ N .

Proof. For i ∈ N write

Yi =
S(i)

S(i− 1)
.

Then
S(n)

S(0)
=

S(1)

S(0)

S(2)

S(1)

S(3)

S(2)
· · · S(n)

S(n− 1)
= Y1Y2Y3 · · ·Yn ,

so

log
S(n)

S(0)
=

n∑

i=1

log Yi .

But since by our assumption on the model the random variables log Y1, log Y2, . . . , log Yn are
independent with

log Yi ∼ N(µ, σ2) for i = 1, . . . , n,

we see, using Lemma 1.33, that

log
S(n)

S(0)
∼ N(nµ, nσ2) .

Thus
S(n)

S(0)
∼ LogNormal(nµ, nσ2) .
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Example 1.46. Assume that the price of a product at the end of week n is given by the IID
lognormal model with parameters µ = 0.0165 and σ = 0.0730. What is the probability that

(a) the price increases over the first week?

(b) the price increases in each of the first two weeks?

(c) the price is higher at the end of week 2 than at the start?

Solution. Let S(n) denote the price of the product at the end of week n.

(a) The desired probability is P (S(1) > S(0)). But

P (S(1) > S(0)) = P

(
S(1)

S(0)
> 1

)

= P

(

log
S(1)

S(0)
> 0

)

,

where

log
S(1)

S(0)
∼ N(µ, σ2) .

Thus

P (S(1) > S(0)) = P

(

log
S(1)

S(0)
> 0

)

= P

(
log S(1)

S(0)
− µ

σ
> −µ

σ

)

= 1− Φ
(

−µ

σ

)

= Φ
(µ

σ

)

= Φ(0.23) = 0.5910 .

Thus, the probability that the price increases over the first week is 0.5910.

(b) Let p = 0.5910 be the probability that the price increases over the first week. Since the
random variables S(n)/S(n−1) are independent, the probability that the price increases
in each of the first weeks is p2 = 0.3493.

(c) The desired probability is P (S(2) > S(0)). But

P (S(2) > S(0)) = P

(
S(2)

S(0)
> 1

)

= P

(

log
S(2)

S(0)
> 0

)

,

where, by Lemma 1.45,

log
S(2)

S(0)
∼ N(2µ, 2σ2) .

Thus

P (S(2) > S(0)) = P

(

log
S(2)

S(0)
> 0

)

= P

(
log S(2)

S(0)
− 2µ

√
2σ

> − 2µ√
2σ

)

= 1− Φ

(

−
√

2µ

σ

)

= Φ

(√
2µ

σ

)

= Φ(0.32) = 0.6255 .

Thus, the probability that the price is higher at the end of week 2 than at the start is
0.6255.
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1.7 The Central Limit Theorem

One of the reasons that Gaussian random variables occur so often is the Central Limit Theorem
(CLT), one of the gems of Probability Theory. To motivate the formulation of the CLT suppose
for the moment that X1, X2, . . . , Xn are independent N(µ, σ2)-distributed random variables.
Then, by Lemma 1.33,

X1 + X2 + · · ·+ Xn ∼ N(nµ, nσ2) ,

and so
X1 + · · ·+ Xn − nµ√

nσ
∼ N(0, 1) .

The CLT generalises this fact to sequences of independent random variables that need not have
Gaussian distributions, but it only holds in the limit as n →∞. Here is a precise formulation.

Theorem 1.47 (Central Limit Theorem). Let X1, X2, . . . be independent identically dis-
tributed random variables with mean E(Xi) = µ and variance Var(Xi) = σ2, where µ ∈ R

and σ > 0. Define Sn =
∑n

i=1 Xi. Then

lim
n→∞

P

(
Sn − nµ√

nσ
≤ x

)

= Φ(x) (∀x ∈ R) .

The conclusion of the CLT is often informally expressed as ‘Sn−nµ√
nσ

converges to N(0, 1)’.

The proof of the CLT relies on the following three auxiliary results.

Lemma 1.48. Let Yn be a sequence of random variables and let Z be a random variable.
Suppose that their characteristic functions satisfy

lim
n→∞

GYn
(α) = GZ(α) (∀α ∈ R) .

Then

lim
n→∞

P (Yn ≤ x) = P (Z ≤ x) (∀x ∈ R) .

Lemma 1.49. If X1, X2, . . . , Xn are independent random variables and Sn = X1 + · · ·+Xn,
then

GSn
(α) = GX1

(α)GX2
(α) · · ·GXn

(α) (∀α ∈ R) .

Lemma 1.50. Let Z be a random variable. Then

Z ∼ N(0, 1) if and only if GZ(α) = exp(−α2

2
) .

Proof of the CLT. We shall first prove a special case. Suppose for the moment that µ = 0
and σ = 1. In order to prove the CLT in this case we need to show that

lim
n→∞

P

(
1√
n

(X1 + · · ·+ Xn) ≤ x

)

= Φ(x) .

Let

Yn =
1√
n

(X1 + · · ·+ Xn) .
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We have

GYn
(α) = E(eiαYn)

= E(e
iα 1

√

n

(X1+···+Xn)
)

= GSn

(
α√
n

)

where Sn = X1 + · · ·+ Xn

= GX1

(
α√
n

)

GX2

(
α√
n

)

· · ·GXn

(
α√
n

)

by Lemma 1.49

= GX1

(
α√
n

)n

,

where the last equality holds since the Xi’s are identically distributed. Moreover,

GX1

(
α√
n

)

= 1 +
∞∑

k=1

(
iα√
n

)k

k!
E(Xk

1 )

= 1 +
iα√
n

E(X1) +
1

2

(
iα√
n

)2

E(X2
1 ) + · · ·

= 1− 1

2

α2

n
+ · · ·

since, by hypothesis, E(X1) = 0 and E(X2
1 ) = Var(X1) + E(X1)

2 = 1. Thus

GYn
(α) = GX1

(
α√
n

)n

=

(

1− 1

2

α2

n
+ · · ·

)n

= exp

(

n log

(

1− 1

2

α2

n
+ · · ·

))

. (1.2)

In order to proceed we need the Taylor-Maclaurin expansion of log(1 − x), which we now
quickly derive. Note that

1

1− x
= 1 + x + x2 + x3 + · · ·

thus ∫ x

0

1

1− t
dt

︸ ︷︷ ︸

=− log(1−x)

= x +
1

2
x2 +

1

3
x3 +

1

4
x4 + · · ·

so

log(1− x) = −x− 1

2
x2 − 1

3
x3 − 1

4
x4 − · · ·

Using the first term of the above expansion of log(1− x) in equation 1.2 we see that

GYn
(α) = exp

(

n

(

−1

2

α2

n
− · · ·

))

= exp

(

−α2

2
− · · ·

)

,

so

lim
n→∞

GYn
(α) = exp

(

−α2

2

)

.

Let now Z ∼ N(0, 1). By Lemma 1.50,

exp

(

−α2

2

)

= GZ(α) ,
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so combining the last two equations gives

lim
n→∞

GYn
(α) = GZ(α) ,

and Lemma 1.48 now implies

lim
n→∞

P (Yn ≤ x) = P (Z ≤ x) = Φ(x) ,

that is, we have proved the CLT in the special case where µ = 0 and σ = 1.
Now we prove the CLT when µ and σ > 0 are arbitrary, using the fact the CLT is true for

µ = 0 and σ = 1. For i ∈ N call

Wi =
Xi − µ

σ
.

Then

E(Wi) =
µ− µ

σ
= 0

and

Var(Wi) =
1

σ2
Var(Xi) =

1

σ2
σ2 = 1 .

Since the Wi’s are independent random variables with mean 0 and variance 1 we can now
apply the special case of the CLT we have just established to conclude that

lim
n→∞

P

(
1√
n

(W1 + · · ·+ Wn) ≤ x

)

= Φ(x) ,

so

lim
n→∞

P

(
1√
nσ

((X1 − µ) + · · ·+ (Xn − µ)) ≤ x

)

= Φ(x) ,

hence

lim
n→∞

P

(
1√
nσ

(X1 + · · ·+ Xn − nµ) ≤ x

)

= Φ(x) ,

thus

lim
n→∞

P

(
Sn − nµ√

nσ
≤ x

)

= Φ(x) ,

and the proof of the general case of the CLT is finished.
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