An introduction to statistical physics with simple examples

Hugo Touchette

School of Mathematical Sciences, Queen Mary, University of London, UK and National Institute for Theoretical Physics (NIThEP), Stellenbosch University, South Africa

Department of Physics, University of Venda, South Africa 17 April 2012

Presentation and computer code for the simulations at http://www.maths.qmul.ac.uk/~ht/talks/

Hugo Touchette (C	MUL)
-------------------	------

Statistical physics

April 2012 1 / 16

Outline

What is statistical physics?

2 Basic concepts

3 Applications

Statistical physics

- Study of physical systems using probabilities and statistics
- Study of systems having many components / particles / molecules
 - Gases, liquids, solids
 - Classical or quantum systems
 - Molecules, polymers, etc.
- Study of physical systems having random components / behavior
 - Weather system
 - Turbulent fluids
 - Electron diffusion
 - **۱**...

Ingredients

- Many particles or components ($\sim 10^{23}$)
- Randomness (vs determinism)
- No exact prediction
- Prediction on average or with some probability

```
Hugo Touchette (QMUL)
```

Statistical physics

April 2012 3 / 16

Basic concepts

Random variable

Variable X taking one of several values x at random

Examples:

- Coin: X = head or X = tail, P(head) = P(tail) = 0.5
- Dice: $X \in \{1, 2, 3, 4, 5, 6\}$
- Gas molecule: (X, V) = (position, velocity)

Probability distribution

Probabilities for the different values of a random variable:

$$P(x) = \operatorname{Prob}(X = x)$$

- 0 < P(x) < 1
- $\sum_{x} P(x) = 1$

Hugo Touchette (QMUL)

Basic concepts (cont'd)

Examples

• Dice:

$$P(x) = rac{1}{6}, \quad x = 1, 2, 3, 4, 5, \, \, {
m or} \,\, 6$$

• Gas molecule: $P(x, y, z, v_x, v_y, v_z)$

Mean, average or expectation

$$E[X] = \sum_{x} x P(x)$$

Variance

$$Var(X) = E[X^2] - E[X]^2 = \sum_{x} x^2 P(x) - \left(\sum_{x} x P(x)\right)^2 > 0$$

The bigger the variance, the more random a random variable is.

```
        Hugo Touchette (QMUL)
        Statistical physics
        April 2012
        5 / 16
```

Application 1: Basic random walk

- Start at 0
- Move left or right with probability

$$P(-1) = a, P(+1) = 1 - a$$

- Repeat *N* times
- Displacement:

$$S_N = \sum_{i=1}^N X_i$$

- $X_i = \pm 1$: Displacement at *i*th jump
- See computer simulations

Basic random walk (cont'd)

• Mean displacement:

$$E[S_N] = E[\sum_{i=1}^N X_i] = \sum_{i=1}^N E[X_i] = N(1-2a)$$

- $a = \frac{1}{2}$: unbiased random walk
- $a > \frac{1}{2}$: left bias
- $a < \frac{1}{2}$: right bias
- Variance:

$$var(S_N) = E[S_N^2] - E[S_N]^2 = N(2a - 2a^2) \sim N$$

- Random walk spreads $\sim \sqrt{\mathrm{var}} \sim \sqrt{N}$
- See computer simulations

Hugo Touchette (C	QMUL)

Statistical physics

April 2012 7 / 16

Basic random walk (cont'd)

• Probability distribution (a = 1/2):

steps	-5	-4	-3	-2	-1	0	1	2	3	4	5
0						1					
1					$\frac{1}{2}$	0	$\frac{1}{2}$				
2				$\frac{1}{4}$	0	$\frac{2}{4}$	0	$\frac{1}{4}$			
3			$\frac{1}{8}$	0	$\frac{3}{8}$	0	$\frac{3}{8}$	0	$\frac{1}{8}$		
4		$\frac{1}{16}$	0	$\frac{4}{16}$	0	$\frac{6}{16}$	0	$\frac{4}{16}$	0	$\frac{1}{16}$	
5	$\frac{1}{32}$	0	$\frac{5}{32}$	0	$\frac{10}{32}$	0	$\frac{10}{32}$	0	$\frac{5}{32}$	0	$\frac{1}{32}$

- See computer graphs
- Random walk in 2D or 3D
- See computer simulations

Application 2: Brownian motion

- Jump by any amount $\Delta x \in \mathbb{R}$
- Jump after a time Δt
- Probability density for the jumps:

$$P(\Delta x) = \frac{1}{\sqrt{2\pi\sigma^2 \Delta t}} e^{-\Delta x^2/(2\sigma^2 \Delta t)}$$

- Mean 0
- Variance $\sigma^2 \Delta t$
- Position at time t:

$$X(t) = \sum_{i=1}^{t/\Delta t} \Delta x_i$$

- $\operatorname{var}(X(t)) \sim t$
- See computer simulations

Hugo Touchette (QMUL)	Statistical

April 2012 9 / 16

Brownian motion (cont'd)

- Observed by Brown (1827)
- Studied by Einstein (1905)
- Probability density:

$$P(x) = \frac{1}{\sqrt{2\pi\sigma_t^2}} e^{-x^2/(2\sigma_t^2)}$$

• Variance:

$$\sigma_t^2 = E[X(t)] = \frac{2k_BT}{3\pi\eta a}t$$

- Viscosity: η
- Particle radius: a
- See video
 [http://www.youtube.com/watch?v=cDcprgWiQEY]

Application 3: Galton board

- See video [http://www.youtube.com/watch?v=J7AGOptcR1E]
- Displacement at *i*th peg:

$$P(X_i = -1) = P(X_i = 1) = \frac{1}{2}$$

• Final position after *N* pegs:

$$S_N = \sum_{i=1}^N X_i$$

- That's our 1D random walk
- Convergence to Gaussian distribution
- See computer graphs

April 2012

11 / 16

Hugo Touchette (QMUL)

Application 4: Maxwell's distribution

- Gas of N particles
- Velocity of particle *i*: $\mathbf{v}_i = (v_{x,i}, v_{y,i}, v_{z,i})$
- Velocity distribution:

$$P(v_x, v_y, v_z) = \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left[-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2k_B T}\right]$$

Statistical physics

- Variance = $\frac{k_B T}{m}$ Speed: $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$
- Speed distribution:

$$P(v) = \sqrt{\frac{2}{\pi} \left(\frac{m}{k_B T}\right)^3} v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$

- Typical speed: $v \sim \sqrt{2k_BT/m} \approx 422$ m/s for N₂ at room temp
- See applet

[http://www.chm.davidson.edu/vce/kineticmoleculartheory/Maxwell.html]

Application 5: Pulled Brownian particle

• Langevin dynamics:

$$m\ddot{x}(t) = \underbrace{-\alpha \dot{x}}_{\text{drag}} \underbrace{-k[x(t) - vt]}_{\text{spring force}} + \underbrace{\xi(t)}_{\text{noise}}$$

- Work = force \times displacement
- Work per unit time:

$$W_{\tau} = rac{1}{ au} \int_0^{ au} F(t) \, v \, dt = \underbrace{\Delta U}_{ ext{potential}} + \underbrace{Q_{ au}}_{ ext{heat}}$$

• Work probability distribution:

$$P(W_{ au}=w)pprox\sqrt{rac{ au}{4\pi c}}\,\exp\left[-rac{ au(w-c)}{4c}
ight],\quad c=v^2$$

• var(
$$W_{ au}$$
) $\sim 1/ au$

```
Hugo Touchette (QMUL)
```

Statistical physics

April 2012 13 / 16

Other applications

- Equilibrium systems
 - Isolated system with fixed energy (microcanonical ensemble)
 - System with fixed temperature (canonical ensemble)
- Diffusion
 - Ions in liquids, liquids in liquids
 - Electron diffusion
 - Percolation in porous solids
- Chemical reations (rates of reactions)
- Nonequilibrium systems
 - Forced steady states
- Biophysics
 - Properties of ADN
 - ATP "burning" in muscles
- Nanophysics
 - Small engines (e.g., ratchets)
- Finance (times series)
- Many more...

General property

Random sums

$$S_N = rac{1}{N} \sum_{i=1}^N X_i, \qquad P(S_N = s) pprox e^{-NI(s)}$$

Long-time stochastic processes

$$W_{ au} = rac{1}{ au} \int_0^{ au} f(t) dt \qquad P(W_{ au} = w) pprox e^{- au I(w)}$$

Fixed-temperature systems

$$U_N = \frac{\text{total energy}}{\text{no. particles}},$$

$$P(U_N = u) \approx e^{-NI(u)}$$

- Large deviation theory
- Applicable to many systems
- Foundations of equilibrium statistical mechanics

Hugo Touchette (QMUL)	Statistical physics	April 2012	15 / 16

Further reading

Wikipedia • Random walk • Brownian motion • Galton board Statistical mechanics David Chandler Introduction to Modern Statistical Mechanics Oxford University Press, 1987 http://stp.clarku.edu/books/ List of other useful books on statistical physics H. Touchette A basic introduction to large deviations: Theory, applications, simulations http://arxiv.org/abs/1106.4146 Presentation and computer code for the simulations at http://www.maths.qmul.ac.uk/~ht/talks/

Statistical physics