An introduction to statistical physics with simple examples

Hugo Touchette
School of Mathematical Sciences, Queen Mary, University of London, UK and
National Institute for Theoretical Physics (NIThEP), Stellenbosch University, South Africa
Department of Physics, University of Venda, South Africa
17 April 2012

Presentation and computer code for the simulations at http://www.maths.qmul.ac.uk/~ht/talks/

Outline

(1) What is statistical physics?
(2) Basic concepts
(3) Applications

Statistical physics

- Study of physical systems using probabilities and statistics
- Study of systems having many components / particles / molecules
- Gases, liquids, solids
- Classical or quantum systems
- Molecules, polymers, etc.
- Study of physical systems having random components / behavior
- Weather system
- Turbulent fluids
- Electron diffusion
- ...

Ingredients

- Many particles or components $\left(\sim 10^{23}\right)$
- Randomness (vs determinism)
- No exact prediction
- Prediction on average or with some probability

Basic concepts

Random variable

Variable X taking one of several values x at random

Examples:

- Coin: $X=$ head or $X=$ tail, $P($ head $)=P($ tail $)=0.5$
- Dice: $X \in\{1,2,3,4,5,6\}$
- Gas molecule: $(X, V)=$ (position, velocity)

Probability distribution

Probabilities for the different values of a random variable:

$$
P(x)=\operatorname{Prob}(X=x)
$$

- $0<P(x)<1$
- $\sum_{x} P(x)=1$

Basic concepts (cont'd)

Examples

- Dice:

$$
P(x)=\frac{1}{6}, \quad x=1,2,3,4,5, \text { or } 6
$$

- Gas molecule: $P\left(x, y, z, v_{x}, v_{y}, v_{z}\right)$

Mean, average or expectation

$$
E[X]=\sum_{x} x P(x)
$$

Variance

$$
\operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}=\sum_{x} x^{2} P(x)-\left(\sum_{x} x P(x)\right)^{2}>0
$$

The bigger the variance, the more random a random variable is.

Application 1: Basic random walk

- Start at 0
- Move left or right with probability

$$
P(-1)=a, \quad P(+1)=1-a
$$

- Repeat N times
- Displacement:

$$
S_{N}=\sum_{i=1}^{N} X_{i}
$$

- $X_{i}= \pm 1$: Displacement at ith jump
- See computer simulations

Basic random walk (cont'd)

- Mean displacement:

$$
E\left[S_{N}\right]=E\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{i=1}^{N} E\left[X_{i}\right]=N(1-2 a)
$$

- $a=\frac{1}{2}$: unbiased random walk
- $a>\frac{1}{2}$: left bias
- $a<\frac{1}{2}$: right bias
- Variance:

$$
\operatorname{var}\left(S_{N}\right)=E\left[S_{N}^{2}\right]-E\left[S_{N}\right]^{2}=N\left(2 a-2 a^{2}\right) \sim N
$$

- Random walk spreads $\sim \sqrt{\text { var }} \sim \sqrt{N}$
- See computer simulations

Basic random walk (cont'd)

- Probability distribution ($a=1 / 2$):

steps	-5	-4	-3	-2	-1	0	1	2	3	4	5
0						1					
1					$\frac{1}{2}$	0	$\frac{1}{2}$				
2				$\frac{1}{4}$	0	$\frac{2}{4}$	0	$\frac{1}{4}$			
3			$\frac{1}{8}$	0	$\frac{3}{8}$	0	$\frac{3}{8}$	0	$\frac{1}{8}$		
4		$\frac{1}{16}$	0	$\frac{4}{16}$	0	$\frac{6}{16}$	0	$\frac{4}{16}$	0	$\frac{1}{16}$	
5	$\frac{1}{32}$	0	$\frac{5}{32}$	0	$\frac{10}{32}$	0	$\frac{10}{32}$	0	$\frac{5}{32}$	0	$\frac{1}{32}$

- See computer graphs
- Random walk in 2D or 3D
- See computer simulations

Application 2: Brownian motion

- Jump by any amount $\Delta x \in \mathbb{R}$
- Jump after a time Δt
- Probability density for the jumps:

$$
P(\Delta x)=\frac{1}{\sqrt{2 \pi \sigma^{2} \Delta t}} e^{-\Delta x^{2} /\left(2 \sigma^{2} \Delta t\right)}
$$

- Mean 0
- Variance $\sigma^{2} \Delta t$
- Position at time t :

$$
X(t)=\sum_{i=1}^{t / \Delta t} \Delta x_{i}
$$

- $\operatorname{var}(X(t)) \sim t$
- See computer simulations

Brownian motion (cont'd)

- Observed by Brown (1827)
- Studied by Einstein (1905)
- Probability density:

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma_{t}^{2}}} e^{-x^{2} /\left(2 \sigma_{t}^{2}\right)}
$$

- Variance:

$$
\sigma_{t}^{2}=E[X(t)]=\frac{2 k_{B} T}{3 \pi \eta a} t
$$

- Viscosity: η
- Particle radius: a
- See video

[http://www.youtube.com/watch?v=cDcprgWiQEY]

Application 3: Galton board

- See video
[http://www.youtube.com/watch?v=J7AGOptcR1E]
- Displacement at ith peg:

$$
P\left(X_{i}=-1\right)=P\left(X_{i}=1\right)=\frac{1}{2}
$$

- Final position after N pegs:

$$
S_{N}=\sum_{i=1}^{N} X_{i}
$$

- That's our 1D random walk
- Convergence to Gaussian distribution
- See computer graphs

Application 4: Maxwell's distribution

- Gas of N particles
- Velocity of particle $i: \mathbf{v}_{i}=\left(v_{x, i}, v_{y, i}, v_{z, i}\right)$
- Velocity distribution:

$$
P\left(v_{x}, v_{y}, v_{z}\right)=\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} \exp \left[-\frac{m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)}{2 k_{B} T}\right]
$$

- Variance $=\frac{k_{B} T}{m}$
- Speed: $v=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}$
- Speed distribution:

$$
P(v)=\sqrt{\frac{2}{\pi}\left(\frac{m}{k_{B} T}\right)^{3}} v^{2} \exp \left(-\frac{m v^{2}}{2 k_{B} T}\right)
$$

- Typical speed: $v \sim \sqrt{2 k_{B} T / m} \approx 422 \mathrm{~m} / \mathrm{s}$ for N_{2} at room temp
- See applet
[http://www.chm.davidson.edu/vce/kineticmoleculartheory/Maxwell.html]

Application 5: Pulled Brownian particle

- Langevin dynamics:

$$
m \ddot{x}(t)=\underbrace{-\alpha \dot{x}}_{\text {drag }} \underbrace{-k[x(t)-v t]}_{\text {spring force }}+\underbrace{\xi(t)}_{\text {noise }}
$$

- Work $=$ force \times displacement
- Work per unit time:

$$
W_{\tau}=\frac{1}{\tau} \int_{0}^{\tau} F(t) v d t=\underbrace{\Delta U}_{\text {potential }}+\underbrace{Q_{\tau}}_{\text {heat }}
$$

- Work probability distribution:

$$
P\left(W_{\tau}=w\right) \approx \sqrt{\frac{\tau}{4 \pi c}} \exp \left[-\frac{\tau(w-c)}{4 c}\right], \quad c=v^{2}
$$

- $\operatorname{var}\left(W_{\tau}\right) \sim 1 / \tau$

Other applications

- Equilibrium systems
- Isolated system with fixed energy (microcanonical ensemble)
- System with fixed temperature (canonical ensemble)
- Diffusion
- lons in liquids, liquids in liquids
- Electron diffusion
- Percolation in porous solids
- Chemical reations (rates of reactions)
- Nonequilibrium systems
- Forced steady states
- Biophysics
- Properties of ADN
- ATP "burning" in muscles
- Nanophysics
- Small engines (e.g., ratchets)
- Finance (times series)
- Many more...

General property

Random sums

$$
S_{N}=\frac{1}{N} \sum_{i=1}^{N} X_{i}, \quad P\left(S_{N}=s\right) \approx e^{-N /(s)}
$$

Long-time stochastic processes

$$
W_{\tau}=\frac{1}{\tau} \int_{0}^{\tau} f(t) d t \quad P\left(W_{\tau}=w\right) \approx e^{-\tau l(w)}
$$

Fixed-temperature systems

$$
U_{N}=\frac{\text { total energy }}{\text { no. particles }}, \quad P\left(U_{N}=u\right) \approx e^{-N I(u)}
$$

- Large deviation theory
- Applicable to many systems
- Foundations of equilibrium statistical mechanics

Further reading

Wikipedia

- Random walk
- Brownian motion
- Galton board
- Statistical mechanics
- David Chandler

Introduction to Modern Statistical Mechanics
Oxford University Press, 1987
俥 http://stp.clarku.edu/books/
List of other useful books on statistical physics
量 H. Touchette
A basic introduction to large deviations:
Theory, applications, simulations
http://arxiv.org/abs/1106.4146
Presentation and computer code for the simulations at http://www.maths.qmul.ac.uk/~ht/talks/

