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Problem

Physical

• Stochastic process: Xt

• Observable: AT [x ]

• Look at trajectories leading to AT = a

• Find effective process describing
these trajectories

Mathematical

• Markov process: {Xt}Tt=0

• Conditioned process: Xt |AT = a

• Is it a Markov process?

• Construct its generator

t

xHtL

a

PHA T=
aL
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Path integral formulation

P(AT = a) =

∫
AT [x]=a

D[x ] e−I [x]/ε

Low noise

t

x
(t
)

• Fluctuation from single path

• Reactive path or instanton

• WKB approx of path integral

Not low noise

t

x
(t
)

• Fluctuation from many paths

• No reactive path

• Whole fluctuation process
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Process

• Markov process: Xt

• One or many particles
• Equilibrium or nonequilibrium
• Includes external forces, reservoirs

• Master (Fokker-Planck) equation:

∂tp(x , t) = L†p(x , t)

• Generator:

∂tEx [f (Xt)] = Ex [Lf (Xt)]

• Path measure:

P[x ] = P({xt}Tt=0)

t

xHtL

t

xHtL
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Examples of Markov processes

Pure jump process

• Transition rates:

W (x , y) = P(x → y in dt)/dt

• Escape rates:

λ(x) =
∑
y

W (x , y) = (W 1)(x)

• Generator: L = W︸︷︷︸
off-diag

− λ︸︷︷︸
diag

t

xHtL

Pure diffusion

• SDE: dXt = F (Xt)dt + σdWt

• Generator:

L = F · ∇+
D

2
∇2, D = σσT

t
xHtL
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Conditioning observable

• Random variable: AT [x ]

• Jump processes:

AT =
1

T

∫ T

0
f (Xt) dt+

1

T

∑
∆Xt 6=0

g(Xt− ,Xt+)

t

xHtL

• Diffusions:

AT =
1

T

∫ T

0
f (Xt) dt +

1

T

∫ T

0
g(Xt) ◦ dXt

t

xHtL

Examples

• Occupation time Xt ∈ ∆

• Mean number jumps (activity), current

• Work, heat, entropy production,...
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Rare event conditioning

Large deviation principle

P(AT = a) ≈ e−TI (a)

• Meaning of ≈:

lim
T→∞

− 1

T
lnP(AT = a) = I (a), P(AT = a) = e−TI (a)+o(T )

• Rate function: I (a)

• Exponentially rare fluctuations

• Applies to many systems and
observables

• Zero of I = Law of Large Numbers

• Small fluct. = Central Limit Thm s

P(AT = a)

µ

T = 10

T = 50

T = 100

I (a)
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Conditioned process

t

xHtL

a

PHA T=
aL

• Conditioned process: Xt |AT = a
• Path distribution:

Pa[x ] = P[x |AT = a] =
P[x ,AT = a]

P(AT = a)
= P[x ]

δ(AT [x ]− a)

P(AT = a)

• Path microcanonical ensemble

• Not necessarily Markov for T <∞
• Becomes equivalent to Markov process as T →∞
• Driven process X̂t
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Spectral elements

Scaled cumulant function

Λk = lim
T→∞

1

T
lnE [eTkAT ]

• k ∈ R

Gärtner-Ellis Theorem

Λk differentiable, then

1 LDP for AT

2 I (a) = sup
k
{ka− Λk}

Perron-Frobenius

Lk rk = Λk rk

• Tilted (twisted) operator: Lk
• Dominant eigenvalue: Λk

• Dominant eigenfunction: rk

Jump processes

Lk = Wekg − λ+ kf

Diffusions

Lk = F · (∇+ kg) +
D

2
(∇+ kg)2 + kf
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Driven process X̂t

Generator

Lk = r−1
k Lk rk − r−1

k (Lk rk)

• Generalization of Doob’s transform (1957)

• Action:

(Lkh)(x) =
1

rk(x)
(Lk rkh)(x)− Λkh(x)

• Markov operator: (Lk1) = 0

• Path distribution:

Pdriven
k [x ]︸ ︷︷ ︸

new

= r−1
k (X0) eT (kAT−Λk ) rk(XT ) P[x ]︸︷︷︸

original
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Main result

Xt |AT = a
T→∞∼= X̂t k(a) = I ′(a)

Pa[x ] ≈ Pdriven
k(a) [x ] almost all paths

BT → b∗ ⇒ BT → b∗ in probability

AT = a AT → a

• Same typical states

• Different fluctuations in general

• Similar to ensemble equivalence (microcanonical/canonical)

• Similar to asymptotic equipartition (information theory)

• I (a) must be convex
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Analogy with equilibrium ensembles

Equilibrium systems

Microcanonical

Pu(ω) = P(ω|H = u)

Canonical

Pβ(ω) =
e−βH(ω)

Z (β)

• Same typical states in thermo limit N →∞
• Different fluctuations

Nonequilibrium systems

Xt |AT = a︸ ︷︷ ︸
conditioned

microcanonical

T→∞∼= X̂t︸︷︷︸
driven

canonical

• Same typical states in ergodic limit T →∞
• Different fluctuations

Hugo Touchette (NITheP) Conditioned processes November 2015 12 / 22



Driven process: Explicit form

Jump process

• Original process: W (x , y)

• Driven process:

Wk(x , y) = rk
−1(x)W (x , y) ekg(x ,y) rk(y), k = I ′(a)

• [Evans PRL 2004, Jack and Sollich PTPS 2010]

Diffusion
• Reference SDE:

dXt = F (Xt)dt + σdWt

• Driven SDE:
dYt = Fk(Yt)dt + σdWt

• Modified drift:

Fk(y) = F (y) + D(kg +∇ ln rk), k = I ′(a)
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Application: Brownian motion

• Process: Wt

• Typical trajectories: wt ∼
√
t

• Atypical trajectories:

AT =
WT

T
=

1

T

∫ T

0
dWt

t

x
(t
)

Effective process

Wt |AT = a
T→∞∼= X̂t = Wt + at︸︷︷︸

added drift
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Langevin equation

dXt = −γXtdt + σdWt

Area

AT =
1

T

∫ T

0
Xtdt

• Fa(x) = −γx + γa

• Modified drift

t

x
(t
)

Empirical variance

AT =
1

T

∫ T

0
X 2
t dt

• Fa = −σ2x/(2a)

• Modified friction

t

x
(t
)
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Applications

• Sheared fluids
• [Mike Evans 2004]

• Interacting particle systems
• ASEP, ZRP, Spin-Glauber, rotators, etc.
• [Talk of Rob Jack]

• Diffusions
• Current or occupation conditioning

• Chemical reactions

• Open quantum systems
• [Talk of Juan Garrahan]

• Random walks on graphs

56 H. Touchette / Physics Reports 478 (2009) 1–69

a b

Fig. 20. (a) Exclusion process on the lattice Zn and (b) rescaled lattice Zn/n. A particle can jump to an empty site (black arrow) but not to an occupied site
(red arrow). The thin line at the bottom indicates the periodic boundary condition ⌘(0) = ⌘(1).

interest for these models comes from the fact that their macroscopic or hydrodynamic behavior can be determined from
their ‘‘microscopic’’ dynamics, sometimes in an exact way. Moreover, the typicality of the hydrodynamic behavior can
be studied by deriving large deviation principles which characterize the probability of observing deviations in time from
the hydrodynamic evolution [164]. The interpretation of these large deviation principles follows the Freidlin–Wentzell
theory, in that a deterministic dynamical behavior—here the hydrodynamic behavior—arises as the global minimum and
zero of a given (functional) rate function. From this point of view, the hydrodynamic equations, which are the equations of
motion describing the hydrodynamic behavior, can be characterized as the solutions of a variational principle similar to the
minimum dissipation principle of Onsager [214].

Two excellent review papers [113,215] have appeared recently on interacting particle models and their large deviations,
so we will not review this subject in detail here. The next example illustrates in the simplest way possible the gist of
the results that are typically obtained when studying these models. The example follows the work of Kipnis, Olla and
Varadhan [216],whowere the first to apply large deviation theory for studying the hydrodynamic limit of interacting particle
models.

Example 6.11 (Simple Symmetric Exclusion Process). Consider a system of k particles moving on the lattice Zn of integers
ranging from 0 to n, n > k; see Fig. 20(a). The rules that determine the evolution of the particles are assumed to be the
following:

• A particle at site iwaits for a random exponential time with mean 1, then selects one of its neighbors j at random.
• The particle at i jumps to j if j is unoccupied; if j is occupied, then the particle stays at i and goes to a waiting period again

before choosing another neighbor to jump to (exclusion principle).

We denote by ⌘t(i) the occupation of the ‘‘site’’ i 2 Zn at time t , and by ⌘t = (⌘t(0), ⌘t(1), . . . , ⌘t(n � 1)) the whole
configuration ormicrostate of the system. Because of the exclusion principle, ⌘t(i) 2 {0, 1}. Moreover, we impose boundary
conditions on the lattice by identifying the first and last site.

The generator of the Markovian process defined by the rules above can be written explicitly by noting that there can be
a jump from i to j only if ⌘(i) = 1 and ⌘(j) = 0. Therefore,

(Lf )(⌘) = 1
2

X

|i�j|=1

⌘(i)[1 � ⌘(j)][f (⌘i,j) � f (⌘)], (276)

where f is any function of ⌘, and ⌘i,j is the configuration obtained after one jump, that is, the configuration obtained by
exchanging the occupied state at i with the unoccupied state at j:

⌘i,j(k) =
(

⌘(i) if k = j
⌘(j) if k = i
⌘(k) otherwise.

(277)

To obtain a hydrodynamic description of this dynamics, we rescale the lattice spacing by a factor 1/n, as shown in Fig. 20(b),
and take the limit n ! 1 with r = k/n, the density of particles, fixed. Furthermore, we speed-up the time t by a factor
n2 to overcome the fact that the diffusion dynamics of the particle system ‘‘slows’’ down as n ! 1. In this limit, it can be
proved that the empirical density of the rescaled dynamics, defined by

⇡n
t (x) = 1

n

X

i2Zn

⌘n2t(i) �(x � i/n), (278)

where x is a point of the unit circle C , weakly converges in probability to a field ⇢t(x) which evolves on C according to the
diffusion equation

@t⇢t(x) = @xx⇢t(x). (279)

It can also be proved that the fluctuations of ⇡n
t (x) around the deterministic field ⇢t(x) follows a large deviation principle,

expressed heuristically as

Pn[⇡n
t = ⇡t ] = Pn({⇡n

t (x) = ⇡t(x)}⌧t=0) ⇣ e�nI[⇡t ]. (280)

• Effective (nonequilibrium) process for fluctuations

• Conditioning induces non-local forces/long-range interactions

• Nonequilibrium = conditioning equilibrium?
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Conclusion

Xt |AT = a︸ ︷︷ ︸
conditioned

microcanonical

T→∞∼= X̂t︸︷︷︸
driven

canonical

• Effective process for fluctuations
• Process (ensemble) equivalence

Other links and applications

• Variational principles for large deviations [Varadhan, Eyink,...]

• Nonequilibrium maximum entropy [Filyukov, Evans,...]

• Stochastic optimal control [Fleming,...]

• Quasi-stationary distributions

Ongoing work

• Nonequilibrium systems

• Numerical large deviations

Hugo Touchette (NITheP) Conditioned processes November 2015 17 / 22

Large deviations in principle and practice

What we have in principle

• General theory of steady states and fluctuations

• Legendre structure underlying large deviation functions

• Different limits: system size, time, noise [source of general results]

• Same language for equilibrium and nonequilibrium

Problems in practice

• Large deviation functions are hard to obtain

• Nonequilibrium is difficult [system dependent, non-hermitian]

• True also for equilibrium [eg free energy of real systems]

To develop

• Approximation methods for large deviations

• Numerical methods

• Response theory
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Nonequilibrium systems

Nonequilibrium

Ta Tb
J > 0

• Microscopic dynamics:

W noneq(x → y)?

• Many models possible

Equilibrium

Tb TbJ = 0

• Microscopic dynamics known

• Detailed balance:

W eq(x → y)

W eq(y → x)
= eβ∆E

Evans’s hypothesis [PRL 2004; JPA 2005]

W noneq(x → y) = W eq(x → y |J)

• Nonequilibrium = conditioning of equilibrium
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Markov conditioning

• State conditioning [Doob 1957]

Xt |XT ∈ A target point or set

• Schrödinger bridge [Schrödinger 1931]

Xt | p(x ,T ) = q(x) target distribution

• Quasi-stationary distributions

Xt︸︷︷︸
absorbing

| not reaching absorbing state ≡ X̂t︸︷︷︸
non-absorbing

Here

• Xt |AT with AT defined on [0,T ]

• Requires generalization of Doob’s transform

• Asymptotic equivalence
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Other applications

Conditional limit theorems

• Sequence of RVs: X1,X2, . . . ,Xn, Xi ∼ P(x)

• Sample mean: Sn =
1

n

n∑
i=1

f (Xi )

• Conditional marginal:

lim
n→∞

P(Xi = x |Sn = s) =
ekf (x)

E [ekf (X )]
P(x)

Control representations of PDEs

PDE
I=− lnφ→ Hamilton-Jacobi equation (Hopf-Cole)

φ(x , t) ↓
∂tφ = Lφ Dynamic programming

↓
Optimal stochastic control = Doob transform

• [Fleming, Sheu, Whittle, Dupuis-Ellis – 80s and 90s]
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