# Limitations of statistical mechanics: Hints from large deviation theory

Hugo Touchette

School of Mathematical Sciences Queen Mary, University of London

### 3rd International Conference on Statistical Physics Larnaca, Cyprus, July 2011

Supported by the European Physical Society

Hugo Touchette (QMUL)

Limits of statistical mechanics

July 2011 1 / 17

# Limits, limitations and boundaries

### Experimental limits - incompleteness

- Relativistic phenomena not described by Newtonian mechanics
- Photoelectric effect not explained by classical EM theory

### Theoretical limitations

- QM does not describe nonlinear evolutions (if any)
- Classical EM theory does not explain particle-like phenomena

### Conditions of validity / boundaries

- Thermodynamics apply to large systems
- QM applies when action  $\sim \hbar$

July 2011 2 / 17

# Questions and approach

#### Questions

- Are there any phenomena not explained by statistical mechanics? (Boltzmann-Gibbs equilibrium statistical mechanics = ESM)
- What are the conditions of validity of ESM?
- What are the boundaries of ESM?

### Approach

- ESM = Large deviation theory (LDT)
- Study known boundaries of LDT
- Derive boundaries of ESM

#### Plan

- Recap on LDT / Limits of LDT
- ESM = LDT / Limits of ESM
- Conclusions

Hugo Touchette (QMUL)

Limits of statistical mechanics

July 2011 3 / 17

# Large deviation theory

Ellis (1985), Touchette Phys Rep 178 (2009)

- Random variable:  $A_n$
- Probability distribution:  $P(A_n = a)$

Large deviation principle (LDP)

$$P(A_n = a) \approx e^{-nI(a)}, \quad n \to \infty$$

• Meaning of  $\approx$ :

$$\lim_{n\to\infty}-\frac{1}{n}\ln P(a)=I(a)$$

• Rate function:  $I(a) \ge 0$ 

### Goals of large deviation theory

- Prove that a large deviation principle exists
- ② Calculate the rate function

July 2011 4 / 17

## Two important results

• Scaled cumulant generating function (SCGF):

$$\lambda(k) = \lim_{n \to \infty} \frac{1}{n} \ln \langle e^{nkA_n} \rangle, \qquad k \in \mathbb{R}$$



# Applications

- Sum of random variables
  - Cramér 1938
- Product of random variables
- Markov processes
  - Donsker & Varadhan
- Stochastic differential equations
  - Freidlin & Wentzell 1970s
- Stochastic field equations
- ...

## Example: Exponential random variables

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(X_i = x) = \frac{1}{\mu} e^{-x/\mu}, \quad x > 0, \quad \text{IID}$$

- SCGF: $\lambda(k) = -\ln(1-\mu k), \qquad k < rac{1}{\mu}$
- Rate function:

$$I(s) = rac{s}{\mu} - 1 - \ln rac{s}{\mu}, \qquad s > 0$$



- Concentration point:  $s^* = \langle X \rangle = \mu$
- Gaussian fluctuations around s\*
- Non-Gaussian fluctuations away from  $s^*$

| Hugo Touchette (QMUL) | Limits of statistical mechanics | July 2011 7 / 17 |
|-----------------------|---------------------------------|------------------|

## General properties





- Law of Large Numbers
  - Typical points = concentration points = zeros of I(a)
- Central Limit Theorem
  - Quadratic minima = Gaussian fluctuations
  - Small deviations
- Large deviations
  - Fluctuations away from typical points

#### General theory of typical states and fluctuations

## Boundaries of LDT

• LDP: LDP  $P(A_n = a) \approx e^{-nI(a)}$ • SCGF:  $\lambda(k) = \sup_{a} \{ka - I(a)\}$ GΕ • Rate function:  $I(a) = \sup_{k} \{ka - \lambda(k)\}$ Boundary cases no LDP • I = 0 or  $\infty$ •  $\lambda$  not differentiable (smoothness problem) •  $\lambda$  does not exist (existence problem) Hugo Touchette (QMUL) Limits of statistical mechanics July 2011 9 / 17

## Smoothness problem: Nonconvex rate functions

Dinwoodie (1993), Ellis (1995)

- $\lambda(k)$  always convex
- *I*(*a*) not necessarily convex



## Existence problem: Non-exponential LDs

$$\begin{array}{c} \mathsf{Existence of} \\ \lambda(k) \end{array} \iff \begin{array}{c} \mathsf{Existence of} \\ \mathsf{LDP} \end{array}$$

Sub-exponential

SC

$$\lambda = \infty$$
 if  $P(A_n) \sim n^{-\alpha}$   
 $I = 0$ 

$$\lambda = 0$$
 if  $P(A_n) \sim e^{-e^n}$   
 $I = \infty$ 

Example: Cauchy sample mean

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(X_i = x) = \frac{1}{\pi} \frac{1}{x^2 + 1}, \quad x \in \mathbb{R}$$
$$\mathsf{GF:} \ \lambda(k) = \begin{cases} 0 & k = 0\\ \infty & k \neq 0 \end{cases}$$

No LDP – LDT does not apply

Hugo Touchette (QMUL)Limits of statistical mechanicsJuly 201111 / 17

# Applications in statistical physics

Oono Prog Theoret Phys Suppl (1989), HT Phys Rep (2009)

#### • Equilibrium statistical mechanics

- ► Lanford (1973)
- Ruelle (1960s)
- ► Ellis (1984)
- Noise-perturbed dynamical systems, SDEs
  - ► Freidlin & Wentzell (1970s)
  - Onsager-Machlup (1953)
  - Graham (1980s)
- Nonequilibrium systems
  - ► Gallavotti & Cohen (1995)
  - ► Derrida, Bodineau (1990s-2000s)
  - Bertini, Gabrielli, Jona-Lasinio (2000s)
  - **١**...

LDT is the mathematical language of statistical mechanics

## Entropy and free energy

- Microstate:  $\omega = \omega_1, \omega_2, \dots, \omega_N$
- Energy:  $U_N(\omega)$
- Density of states:  $\Omega(U_N = u)$
- LDP:  $\Omega(U_N = u) \approx e^{Ns(u)}$

Gärtner-Ellis Theorem

$$s(u) = \min_{\beta} \{\beta u - \varphi(\beta)\}$$

• Free energy:

$$\varphi(\beta) = \lim_{N \to \infty} -\frac{1}{N} \ln Z_N(\beta), \qquad Z_N(\beta) = \int e^{-\beta U_N(\omega)} d\omega$$

- $Z_N(\beta)$  = partition function = generating function
- $\varphi(\beta) = \text{free energy} = \text{SCGF}$
- s(u) = entropy = rate function
- Basis of Legendre transform in thermo

| Hugo Touchette (QMUL) | Limits of statistical mechanics | July 2011 | 13 / 17 |
|-----------------------|---------------------------------|-----------|---------|

# Boundaries of ESM

• LDT:



July 2011 14 / 17

## Nonconcave entropies

Campa, Dauxois & Ruffo Phys Rep (2009); HT Phys Rep (2009)



No Legendre transform for nonconcave entropy systems

```
Hugo Touchette (QMUL)
```

Limits of statistical mechanics

July 2011 15 / 17

# Non-exponential density of states



# Conclusions

#### Statistical mechanics $\Leftrightarrow$ Large deviation theory

### ESM

- ESM based on LDP
- $\Omega_N(u)$  and  $Z_N(\beta)$  exponential in N = LDP
- Entropy s(u) = rate function
- Free energy  $\varphi(\beta) = \mathsf{SCGF}$
- Legendre transform  $\leftarrow$  Gärtner-Ellis Theorem

### Limitations

- s(u) may be nonconcave
- **2**  $\varphi(\beta)$  may not exist
  - $\Omega_N(u)$  not exponential
  - Physically possible / observable?
  - Systems with: long-range interaction / correlation / order

Hugo Touchette (QMUL)

Limits of statistical mechanics

July 2011 17 / 17