Equilibrium systems with nonequivalent ensembles

Hugo Touchette

School of Mathematical Sciences Queen Mary, University of London

Workshop on Equilibration and Equilibrium NITheP, Stellenbosch, South Africa March 2011

http://www.maths.qmul.ac.uk/~ht

 Hugo Touchette (QMUL)
 Nonequivalent ensembles
 March 2011
 1 / 26

Outline

- Equilibrium ensembles
- 2 Short- vs long-range interactions
- 3 Thermodymamic nonequivalence
- 4 Macrostate nonequivalence
- 5 Applications
- 6 Current problems

Summary

Equilibrium ensembles

- *N*-particle system
- Hamiltonian: $H(\omega)$
- Macrostate: $M(\omega)$

Equivalence of ensembles

$$\mathsf{ME} \stackrel{?}{=} \mathsf{CE}$$

U $\stackrel{?}{\longleftrightarrow} \beta$ Macrostate level $u \stackrel{?}{\longleftrightarrow} \beta$ $\mathcal{E}^u \stackrel{?}{\longleftrightarrow} \mathcal{E}_{\beta}$

- Short-range systems have equivalent ensembles
- Long-range systems may have nonequivalent ensembles
- Related to concavity of s(u)

Short- vs long-range interactions

Potential:

$$V(r) = \frac{c}{r^{\alpha}}$$

• Interaction energy:

$$U = \int_{\varepsilon}^{R} V(r) \ d^{d}r \propto \begin{cases} R^{d-\alpha} & \alpha \neq d \\ \ln R & \alpha = d \end{cases}$$

Short-range interaction		α	$lpha/{m d}$	Туре
• $\alpha > d$	Collisions	∞	∞	short
	Gravity	1	1/3	long
Long-range interaction	Coulomb	1	1/3	long (short)
• α < d	Mean-field	0	0	long (∞)

```
Hugo Touchette (QMUL)
```

Nonequivalent ensembles

March 2011 5 / 26

Short- vs long-range interactions (cont'd)

- Finite-range interaction
- Finite correlation length
- Extensive energy: $U \sim N$
- Bulk dominates over surface
- Sub-system separation
- Entropy always concave

- Interaction is 'infinite' range
- Infinite correlation length
- Non-extensive energy
- Bulk \sim surface
- No separation
- Entropy possibly nonconcave

Concave entropy – Short-range

[Ruelle, Lanford 1960s]

• Entropy:

$$s(u) = \lim_{N \to \infty} \frac{1}{N} \ln \Omega_N(U = Nu)$$

• Separation argument:

$$egin{aligned} &Upprox U_1+U_2\ &\Omega_{N}(U_1+U_2)\geq\Omega_{N_1}(U_1)\;\Omega_{N_2}(U_2) \end{aligned}$$

 $s(\alpha u_1 + \bar{\alpha} u_2) \geq \alpha s(u_1) + \bar{\alpha} s(u_2)$

Hugo Touchette (QMUL)

Nonequivalent ensembles

March 2011 7 / 26

Nonconcave entropies – Long-range

[Lynden-Bell 1969, Thirring 1970, Gross 1997]

- Interaction is 'infinite' range
- No separation possible
- Entropy can be nonconcave

Mean-field ϕ^4 model

Two-block spin model

[HT Am J Phys 2008]

Legendre duality

Canonical **Microcanonical** slope = us(u) $\varphi(\beta)$ slope = β * * u β $\varphi(\beta) = \beta u - s(u)$ $s'(u) = \beta$ $s(u) = \beta u - \varphi(\beta)$ $\varphi'(\beta) = u$ $\begin{array}{c} \boldsymbol{s} \longleftrightarrow \varphi \\ \boldsymbol{u} \longleftrightarrow \beta \end{array}$ $s = \varphi^*$ $\varphi = s^*$

Thermodynamic equivalence of ensembles

Hugo Touchette (QMUL)

Nonequivalent ensembles

Hugo Touchette (QMUL)	Nonequivalent ensembles	March 2011	11 / 26

First-order phase transitions

- s(u) nonconcave $\Rightarrow \varphi(\beta)$ non-differentiable
- First-order phase transition in canonical ensemble
- Latent heat: $\Delta u = u_h u_l$
- Canonical skips over microcanonical

Negative heat capacities

Macrostate nonequivalence

[Eyink & Spohn JSP 1993; Ellis, Haven & Turkington JSP 2000]

Systems with nonconcave entropies

[Campa, Dauxois & Ruffo Phys Rep 2009]

- Gravitational systems
 - Lynden-Bell, Wood, Thirring (1960-)
 - Chavanis (2000-)
- Spin systems
 - Mean-field Blume-Emery-Griffiths model
 - Mean-field Potts model $(q \ge 3)$
 - Mean-field ϕ^4 model
- 2D turbulence model
 - Point-vortex models (Onsager, 1949)
 - Kiessling & Lebowitz (1997)
 - Ellis, Haven & Turkington (2002)
- Optical lattices (quantum spins)
 - ► Kastner (2010)

Hugo To	ouchette	(QMUL)

Nonequivalent ensemble

Gravitational systems

[Lynden-Bell, Wood, Thirring (60s and 70s), Chavanis (2000)]

• Total energy:

Virial theorem:

$$E = \langle K \rangle + \langle V \rangle$$

$$2\langle K
angle + \langle V
angle = 0$$

• Energy:

$$E=-\langle K
angle <0~$$
 bound state

• Kinetic temperature:

 $T\propto \langle K
angle$

• Heat capacity:

$$C = rac{dE}{dT} \propto rac{dE}{d\langle K
angle} < 0$$

• $T \searrow$ when $E \nearrow$

Mean-field Potts model

[Ispolatov & Cohen Physica A 2000; Costeniuc, Ellis & HT JMP 2005]

• Hamiltonian:

$$H = -rac{1}{2N} \sum_{i,j=1}^{N} \delta_{\omega_i,\omega_j}, \quad \omega_i \in \{1,2,3\}$$

- Distribution of spins: $\nu = (a, b, b)$
- Macrostate:

$$a=rac{\# \text{ spins } 1}{N}$$

- ME macrostate: a(u)
- CE macrostate: a(β)
- Nonconcave entropy
 - Nonequivalent ensembles
 - First-order canonical phase transition
 - Metastable states

$\phi^{\rm 4}~{\rm model}$

[Campa, Ruffo & HT, Physica A 2007]

• Hamiltonian:

Hugo Touchette (QMUL)

$$H = \sum_{i=1}^{N} \left(\frac{p_i^2}{2} - \frac{q_i^2}{4} + \frac{q_i^4}{4} \right) - \frac{1}{4N} \sum_{i,j=1}^{N} q_i q_j, \quad p_i, q_i \in \mathbb{R}$$

Nonequivalent ensembles

- Magnetisation: $m = \frac{1}{N} \sum_{i=1}^{N} q_i$
- Entropy: *s*(ε, *m*)
- Effective field: $h = -T\partial_m s$
- Susceptibility: $\chi = (\partial_m h)^{-1}$

March 2011 18 / 26

Recent research: Ergodicity breaking

[Mukamel et al PRL 2005, Bouchet et al PRE 2008]

- Nonconcave entropies can have disconnected support
- Disconnected macrostate regions
- Non-ergodic microcanonical dynamics

Generalized canonical ensemble

[Costeniuc, Ellis, HT & Turkington JSP 2005; Costeniuc, Ellis & HT PRE 2006]

Canonical ensemble $Z(\beta) = \sum_{\omega} e^{-\beta U}$ $\varphi(\beta) = \lim_{N \to \infty} -\frac{1}{N} \ln Z(\beta)$ $s \neq \varphi^*$

Generalized canonical ensemble $Z_g(\beta) = \sum_{\omega} e^{-\beta U - Ng(U/N)}$ $\varphi_g(\beta) = \lim_{N \to \infty} -\frac{1}{N} \ln Z_g(\beta)$ $s = \varphi_g^* + g$

- Recover equivalence with modified Legendre transform
- Gaussian ensemble: $g(u) = \gamma u^2$
- Betrag ensemble: $g(u) = \gamma |u u_0|$
- Universal ensembles: equivalence recovered with $\gamma \to \infty$

Hugo Touchette (QMUL)	Nonequivalent ensembles	March 2011	21 / 26

Quasi-stationary states

[Campa, Dauxois & Ruffo Phys Rep 2009]

- Long-lived states \neq ME or CE equilibrium states
- Nonequilibrium states
- First observed in Hamiltonian mean-field model
- Described using Vlasov equation (kinetic theory)
- Generic for long-range systems?

Other ensembles: DNA stretching experiments

[Cluzel et al Science 1996, Sinha & Samuel PRE 2005]

- Noncommuting macrostates? e.g., *E* and
- Nonconcave vs affine entropies [HT, Harris & Tailleur PRE 2010]

u

Conclusion

References

	T. Dauxois, S. Ruffo Dynamics and Therr Long Range Interact Vol. 602 of Lecture Springer, New York,	o, E. Arimondo, and M. W nodynamics of Systems wi ions Notes in Physics 2002	ilkens (eds.) th
	T. Dauxois, S. Ruffo Long-Range Interact Les Houches Summe Oxford Univ. Press,	e, and L. F. Cugliandolo (e ing Systems er School 2010	eds.)
	A. Campa, T. Dauxo Statistical mechanics with long-range inter Phys. Rep. 480, 57,	ois, and S. Ruffo and dynamics of solvable ractions 2009	e models
	JSTAT special issue http://iopscience.iop	on long-range systems o.org/1742-5468/focus/ext	tra.topical5
ł	Hugo Iouchette (QMUL)	Nonequivalent ensembles	March 2011

26 / 26