Poles of partition functions

(Work in progress)

Hugo Touchette

School of Mathematical Sciences Queen Mary, University of London

Workshop on Long-range Interactions in Classical and Quantum Physics NITheP, Stellenbosch, South Africa November 2009

Work in collaboration with

- Rosemary J. Harris, London
- Julien Tailleur, Edinburgh

Hugo Touchette (QMUL)	Poles of partition functions	November 2009	1 / 23

Outline

November 2009 2 / 23

Microcanonical vs canonical

- *N*-particle system
- Microstate: ω
- Hamiltonian: $U(\omega)$
- Mean energy: u = U/N

Microcanonical

- Control parameter: u
- Density of states:

$$\Omega(u) = \int \delta(H(\omega) - uN) \,\mathrm{d}\omega$$

• Entropy:

$$s(u) = \lim_{N \to \infty} \frac{1}{N} \ln \Omega(u)$$

Canonical

- Control parameter: β
- Partition function:

$$Z(eta) = \int e^{-eta U(\omega)} d\omega \ = \int \Omega(u) e^{-eta Nu} du$$

• Free energy:

$$arphi(eta) = \lim_{N o \infty} -rac{1}{N} \ln Z(eta)$$

November 2009

3 / 23

Hugo Touchette (QMUL)

Poles of partition functions

Concave entropy

Microcanonical Canonical slope = us(u) $\varphi(\beta)$ slope = β u β $s(u) = \beta u - \varphi(\beta)$ $\varphi(\beta) = \beta u - s(u)$ $s'(u) = \beta$ $\varphi'(\beta) = u$ $s \longleftrightarrow \varphi$ $u \longleftrightarrow \beta$ $\varphi = \mathbf{s}^*$ $s = \varphi^*$ • Legendre duality

• Equivalence of ensembles

Nonconcave s Always concave

 $arphi = s^*$ $s
eq s^{**}$

 $\mathbf{s}^{**}=\varphi^*$

- $s^{**}(u) = \text{concave envelope of } s(u)$
- $s^{**}(u) \geq s(u)$
- Nonequivalent ensembles
- Related to first-order phase transitions

Hugo Touchette(QMUL)	Poles of partition functions	November 2009	5 / 23

Systems with nonconcave entropies

- Gravitational systems
 - Lynden-Bell, Wood, Thirring (1960-)
- Spin systems
 - Blume-Emery-Griffiths model
 - Mean-field Potts model $(q \ge 3)$
 - Mean-field ϕ^4 model
- 2D turbulence model
 - Point-vortex models, Onsagers
 - Kiessling & Lebowitz (1997)
 - Ellis, Haven & Turkington (2002)

Calculation methods

- Contraction principle (large deviation theory)
- Oritical points of generating functions
- Generalized canonical ensemble

Hugo Touchette (QMUL)

November 2009

8 / 23

Starting point: Laplace transform

• Laplace transform:

$$Z(eta) = \int_{-\infty}^{\infty} \Omega(u) \,\mathrm{e}^{-eta \mathsf{N} u} \,\mathrm{d} u$$

- Region of convergence = ROC
- Analytic in ROC
- Inverse Laplace transform:

$$\Omega(u) = \frac{1}{2\pi \mathsf{i}} \int_{r-\mathsf{i}\infty}^{r+\mathsf{i}\infty} Z(\beta) \, \mathsf{e}^{\beta \mathsf{N} u} \, \mathsf{d}\beta$$

- ► r ∈ ROC
- Bromwich contour
- Can we obtain s(u) from ILT?
- Can we obtain nonconcave/affine s(u) from ILT?

Hugo Touchette (QMUL)	Poles of partition functions	November 2009	9 / 23

Standard approach: Steepest-descent approximations

•
$$Z(\beta) \approx e^{-N\varphi(\beta)}$$

• S-D approximation:
 $\Omega(u) \approx \frac{1}{2\pi i} \int_{B} e^{N[\beta Nu - \varphi(\beta)]} d\beta$
 $= \frac{1}{2\pi i} \int_{C} e^{N[\beta u - \varphi(\beta)]} d\beta$
 $\approx e^{N[\beta^* u - \varphi(\beta^*)]}$
• Saddle-point: $\varphi'(\beta^*) = u$
• S-D contour: $\operatorname{Im}\{\beta u - \varphi(\beta)\} = 0$

• Entropy:

$$s(u) = \beta^* u - \varphi(\beta^*) = \inf_{\beta} \{\beta u - \varphi(\beta)\}$$

s(u) obtained is necessarily concave

 $\mathsf{Re}\beta$

 $\text{Im}\beta$

Two examples

New approach: Poles of partition functions

$$Z_1(\beta) = e^{-N\beta} + e^{N\beta} \qquad \qquad Z_2(\beta) = \frac{e^{N\beta}}{\beta} - \frac{e^{-N\beta}}{\beta}$$

No pole Poles

Poles in series representations of $Z(\beta) \longleftrightarrow$ Affine parts of s(u)

Ansatz

$$Z(eta) = \sum_j c_j(eta) \, \mathrm{e}^{-N arphi_j(eta)}$$

- $\varphi_j(\beta)$ are smooth
- $\varphi_j(\beta)$ are independent of N
- $c_j(\beta)$ are sub-exponential in N
- $c_j(\beta)$ may have simple poles

Decomposition is not unique

Hugo Touchette (QMUL)

Poles of partition functions

November 2009 12 / 23

Effect of poles

1. Distribute ansatz in ILT:

$$\Omega(u) = \sum_{j} \frac{1}{2\pi i} \int_{B} c_{j}(\beta) e^{N[\beta u - \varphi_{j}(\beta)]} d\beta.$$

- Deform Bromwich contour to S-D contour:
- Case A: No crossing of poles:

Effect of poles (cont'd)

2. Deform Bromwich contour to S-D contour:

Case B: Crossing of poles:

Approximations:

$$\frac{1}{2\pi i} \int_{B} c_{j}(\beta) e^{N[\beta u - \varphi_{j}(\beta)]} d\beta \approx \underbrace{e^{N[\beta_{j}^{*}u - \varphi_{j}(\beta_{j}^{*})]}}_{e^{N} \text{ S-D}} + \underbrace{\sum_{\ell} \sigma_{j\ell} e^{N[\beta_{j\ell}^{\times}u - \varphi(\beta_{j\ell}^{\times})]}}_{\ell}$$

- ▶ β_i^{*}: Saddle-point
- $\beta_{j\ell}^{\times}$: Poles crossed (simple) $\sigma_{j\ell}$: Residue parity (sign)

November 2009 14 / 23

e^N residue

Effect of poles (cont'd)

3. Gather approximations:

$$\Omega(u) \approx \sum_{j} e^{N[\beta_{j}^{*}u - \varphi(\beta_{j}^{*})]} + \sum_{\ell} \sigma_{j\ell} e^{N[\beta_{j\ell}^{\times}u - \varphi(\beta_{j\ell}^{\times})]}$$

- Possible cancellation of terms
- 4. Take largest term (Laplace approximation):

$$\Omega(u) \approx \exp\left(N \sup_{j} \sup_{\beta \in B_j} \{\beta u - \varphi_j(\beta)\}\right)$$

• B_j = set of non-cancelling saddlepoints β_j^* and poles $\beta_{i\ell}^{\times}$

Final result

$$s(u) = \sup_{j} \sup_{\beta \in B_j} \{\beta u - \varphi_j(\beta)\}$$

Hugo Touchette (QMUL)

Poles of partition functions

Concavity of s(u)

$$s(u) = \sup_{j} \sup_{\beta \in B_j} \{\beta u - \varphi_j(\beta)\}$$

Affine s(u)

- max over B_j picks up a pole
- max over B_j picks up a saddlepoint that is constant as a function of u
 - Farago JSP 2002
 - Kastner arXiv:0909.5638

Strictly concave or nonconcave s(u)

• max over B_j picks up neither a pole nor a constant saddlepoint

No poles

$$s(u) = \sup_{j} \{\beta_j^* u - \varphi_j(\beta_j^*)\} = \sup_{j} \inf_{\beta} \{\beta u - \varphi_j(\beta)\}$$

Hugo Touchette (QMUL)

November 2009

15 / 23

Application: Kittel's DNA zipper model

Kittel Am. J. Phys. 1965

- Model:
 - ► *N* bonds
 - Bond energy = ϵ
 - Degeneracy = G
- Partition function:

$$Z(\beta) = \sum_{p=0}^{N-1} G^p e^{-\beta p\epsilon} = \frac{1 - G^N e^{-\beta N\epsilon}}{1 - G e^{-\beta \epsilon}}$$

• Decomposition:

$$Z(\beta) = \frac{1}{1 - e^{-(\beta - \beta_c)\epsilon}} - \frac{e^{-N(\beta \epsilon - \ln G)}}{1 - e^{-(\beta - \beta_c)\epsilon}}$$

- Poles: $e^{\beta \epsilon} = G$
 - Infinite number of poles
 - How to deform contour?

Hugo Touchette(QMUL)	Poles of partition functions	November 2009	17 / 23

Application: Kittel's DNA zipper model (cont'd)

Observations

- Complex poles come from discrete energy levels
- $u = U/N \rightarrow$ continuous variable in thermo limit
- Study $Z(\beta)$ in thermo limit
- Thermo-limit partition function:

$$Z(\beta) = \sum_{p=0}^{N-1} G^p e^{-\beta p\epsilon} = \sum_r e^{-N(\beta r\epsilon - r \ln G)}, \quad r = p/N$$
$$\rightarrow \int_0^1 e^{-Nu(\beta \epsilon - \ln G)} du = \frac{1 - e^{-N(\beta \epsilon - \ln G)}}{N(\beta \epsilon - \ln G)}$$

- Pole: $\beta_c = \epsilon^{-1} \ln G$
- Entropy:

$$s(u) = \begin{cases} eta_c u & u \in [0, \epsilon) \\ -\infty & ext{otherwise} \end{cases}$$

Large deviation generalization

Statistical mechanics	Large deviation theory	
$u = \frac{U}{N}$	An	Random variable
$\Omega(u)$	$P(A_n = a)$	Prob distribution
Z(eta)	$G(k)=\langle { m e}^{nkA_n} angle$	Generating function
$\Omega(u) pprox \mathrm{e}^{Ns(u)}$	$P(A_n = a) \approx \mathrm{e}^{-nI(a)}$	Rate function
$Z(eta) pprox \mathrm{e}^{-N arphi(eta)}$	$G(k) pprox \mathrm{e}^{n\lambda(k)}$	Scaled cumulant generating function
$s(u) = \inf_{eta} \{eta u - arphi(eta)\}$	$I(a) = \sup_k \{ka - I(a)\}$	Gärtner-Ellis Thm
Hugo Touchette (QMUL)	Poles of partition functions	November 2009 19 / 23

Application: Markov processes

• Markov process: $X_i \in \{-1, 0, 1\}$

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(x_1, \ldots, x_n) = p(x_1) \prod_{i=2}^n \pi(x_n | x_{n-1})$$

• Transition matrix:

$$\Pi = \begin{pmatrix} 1 & p & 0 \\ 0 & c & 0 \\ 0 & 1 - p - c & 1 \end{pmatrix}$$

- Absorbing states: ± 1
- Generating function: $G(k) = \langle e^{nkS_n} \rangle$
- Transfer operator:

$$\Pi_k = \left(egin{array}{ccc} e^{-k} & p e^{-k} & 0 \ 0 & c & 0 \ 0 & (1-p-c) e^k & e^k \end{array}
ight)$$

Application: Markov processes (cont'd)

• Generating function:

$$W_n(k) = \frac{e^{-nk}}{1 - ce^k} + \frac{e^{nk}}{e^k - c} + \frac{e^{n \ln c}(1 - e^k)(1 - ce^k - p - e^k p)}{c - e^k - c^2 e^k + ce^{2k}}$$

- Infinite number of poles
- Real poles: $k = \pm \ln c$
- Keep only the real poles
- Rate function:

Hugo Touchette (QMUL)

Poles of partition functions

November 2009 21 / 23

Conclusion / open problems / conjectures

Main result

- New mechanism for affine entropies
- General canonical calculation method for s(u)
- Works for affine or concave or nonconcave s(u)

Open problems

- What to do with complex poles?
- How to find ansatz? $Z(\beta) = \sum_{j} c_{j}(\beta) e^{-N\varphi_{j}(\beta)}$
- How to find poles?
 - Look at eigenvectors and eigenvalues of transfer operator

Conjectures

- Complex poles related to discreteness of energy levels
- Only real poles are "essential" in thermodynamic limit
- Short-range systems with 1st PT \leftrightarrow real pole at β_c

Last result

• s(u) is affine over (u_l, u_h) : $s(u) = s(u_l) + \beta_c(u - u_l)$ • $\Omega(u) \approx e^{Ns(u)}$

Then

$$Z(\beta) = \int_{-\infty}^{u_l} \Omega(u) e^{-N\beta u} du + \underbrace{\int_{u_l}^{u_h} \Omega(u) e^{-N\beta u} du}_{\propto \frac{1}{\beta - \beta_c}} + \int_{u_h}^{\infty} \Omega(u) e^{-N\beta u} du$$

$s(u)$ affine \Rightarrow $Z(eta)$ admits an expansion with a pole			
Hugo Touchette (QMUL)	Poles of partition functions	November 2009	23 / 23