Poles of partition functions

Hugo Touchette

School of Mathematical Sciences Queen Mary, University of London

35th Conference of the Middle European Cooperation in Statistical Physics, Pont-à-Mousson, France March 2010

HT, Rosemary J. Harris (London), J. Tailleur (Edinburgh)
arxiv:0912.3679
Phys. Rev. E, Rapid Comm. 2010
Slides at http://www.maths.qmul.ac.uk/~ht/talks.html

Context

- Short-range vs long-range systems
- Gravitating particles, unscreened plasmas, free electron laser [Campa, Dauxois, Ruffo, Physics Reports 2009]
- Nonconcave entropies
- Microcanonical vs canonical
- Nonequivalence of ensembles
- First-order phase transitions

Long-range

Concave entropy

Microcanonical

$$
s(u)=\lim _{N \rightarrow \infty} \frac{1}{N} \ln \Omega_{N}(u)
$$

$$
\begin{gathered}
s(u)=\beta u-\varphi(\beta) \\
\varphi^{\prime}(\beta)=u
\end{gathered}
$$

Canonical

$$
\varphi(\beta)=\lim _{N \rightarrow \infty}-\frac{1}{N} \ln Z_{N}(\beta)
$$

$$
\begin{gathered}
\varphi(\beta)=\beta u-s(u) \\
s^{\prime}(u)=\beta
\end{gathered}
$$

$$
\begin{aligned}
& s \longleftrightarrow \varphi \\
& u \longleftrightarrow \beta
\end{aligned}
$$

Nonconcave entropies

u

β
u

Nonconcave s

$$
\begin{aligned}
& \varphi=s^{*} \\
& s \neq s^{* *}
\end{aligned}
$$

- $s^{* *}(u)=$ concave envelope of $s(u)$
- Nonequivalent ensembles
- Related to first-order phase transitions

- Nonconcave/affine $s(u)$ cannot be distinguished from $\varphi(\beta)$
- Can they be distinguished from $Z(\beta)$?

Systems with affine entropies

Kastner \& Pleimling PRL 2009

- First-order phase transitions
- Metastability
- Phase separation
- Generic for short-range systems with first-order phase transition

Result: Set-up

Inverse Laplace transform

$$
\Omega(u)=\frac{1}{2 \pi \mathrm{i}} \int_{r-\mathrm{i} \infty}^{r+\mathrm{i} \infty} Z(\beta) \mathrm{e}^{\beta N u} \mathrm{~d} \beta
$$

Affine parts of $s(u) \longleftrightarrow$ Poles in series representation of $Z(\beta)$

Ansatz

$$
Z(\beta)=\sum_{j} c_{j}(\beta) \mathrm{e}^{-N_{j}(\beta)}
$$

- $\varphi_{j}(\beta)$ are independent of N
- $c_{j}(\beta)$ are sub-exponential in N
- $c_{j}(\beta)$ may have simple poles or branch cuts
- Decomposition is not unique

Result

$$
s(u)=\sup _{j} \sup _{\beta \in\left\{\beta_{j}^{*}, \beta_{j}^{\times}\right\}}\left\{\beta u-\varphi_{j}(\beta)\right\}
$$

- $\beta_{j}^{*}=$ saddlepoints of $\beta u-\varphi_{j}(\beta)$
- $\beta_{j}^{\times}=$poles of $c_{j}(\beta)$

Affine $s(u)$

- poles is picked up
- constant saddlepoint is picked up (branch cut)

Strictly concave or nonconcave $s(u)$

- no pole
- no constant saddlepoint

Application 1

$$
Z_{1}(\beta)=\mathrm{e}^{-N \beta}+\mathrm{e}^{N \beta}
$$

$$
Z_{2}(\beta)=\frac{\mathrm{e}^{N \beta}-\mathrm{e}^{-N \beta}}{\beta}
$$

$$
\varphi(\beta)=-|\beta|
$$

$$
\varphi(\beta)=-|\beta|
$$

$\Omega(u)=\delta(u+1)+\delta(u-1)$
$\Omega(u)= \begin{cases}1 & u=\in[-1,1] \\ 0 & \text { otherwise }\end{cases}$

Application 2: Kittel's DNA zipper model

Kittel Am. J. Phys. 1965

- Model:
- N bonds
- Bond energy $=\epsilon$
- Degeneracy $=G$

- Partition function:

$$
Z(\beta)=\sum_{p=0}^{N-1} G^{p} \mathrm{e}^{-\beta p \epsilon} \rightarrow \frac{1-\mathrm{e}^{-N(\beta \epsilon-\ln G)}}{N(\beta \epsilon-\ln G)}
$$

- Pole: $\beta_{c}=\epsilon^{-1} \ln G$
- Entropy:

$$
s(u)= \begin{cases}\beta_{c} u & u \in[0, \epsilon) \\ -\infty & \text { otherwise }\end{cases}
$$

Conclusion

HT, R. J. Harris, J. Tailleur, arxiv:0912.3679

Main result

- New mechanism for affine entropies
- General canonical calculation method for $s(u)$
- Works for affine or concave or nonconcave $s(u)$

Applications

- Uhlenbeck-Kac model (1D gas)
- DNA models
- Markov processes (large deviation theory) [HT Physics Reports 2009]

Open problems

- $d>1$ systems
- Real vs complex poles
- Other singularities?

Idea of the proof

Deform Bromwich contour to S-D contour:

$$
\frac{1}{2 \pi \mathrm{i}} \int_{B} c_{j}(\beta) \mathrm{e}^{N\left[\beta u-\varphi_{j}(\beta)\right]} \mathrm{d} \beta=\frac{1}{2 \pi \mathrm{i}} \int_{C} c_{j}(\beta) \mathrm{e}^{N\left[\beta u-\varphi_{j}(\beta)\right]} \mathrm{d} \beta+\sum \mathrm{res}
$$

Approximations:

$$
\frac{1}{2 \pi \mathrm{i}} \int_{B} c_{j}(\beta) \mathrm{e}^{N\left[\beta u-\varphi_{j}(\beta)\right]} \mathrm{d} \beta \approx \underbrace{\mathrm{e}^{N\left[\beta_{j}^{*} u-\varphi_{j}\left(\beta_{j}^{*}\right)\right]}}_{\mathrm{e}^{N} \mathrm{~S}-\mathrm{D}}+\underbrace{\sum_{\ell} \sigma_{j \ell} \mathrm{e}^{N\left[\beta_{j \ell}^{\times} u-\varphi\left(\beta_{j \ell}^{\times}\right)\right]}}_{\mathrm{e}^{N} \text { residue }}
$$

- β_{j}^{*} : Saddle-point
- $\beta_{j \ell}^{\times}$: Poles crossed (simple)
- $\sigma_{j \ell}$: Residue parity (sign)

Transfer matrix expansion

$$
Z(\beta)=\operatorname{Tr} T_{\beta}^{N-1} \rho_{\beta}=\sum_{j} c_{j}(\beta) \mathrm{e}^{-N \varphi_{j}(\beta)}
$$

- $T_{\beta}=$ Transfer matrix for $\mathrm{e}^{-\beta H}$
- $\rho_{\beta}=$ boundary condition vector
- $\varphi_{j}(\beta)=-\ln \xi_{j}(\beta)$
- $\xi_{j}(\beta)=j$ th eigenvalue of T_{β}
- $v_{j}(\beta)=j$ th eigenvector
- $a_{j}(\beta)=$ projection of ρ_{β} onto $v_{j}(\beta)$

$$
c_{j}(\beta)=\frac{a_{j}(\beta)}{\xi_{j}(\beta)} \operatorname{Tr} v_{j}(\beta)
$$

