Introduction to large deviation theory: Theory, applications, simulations

Hugo Touchette

School of Mathematical Sciences Queen Mary, University of London

3rd International Summer School on Modern Computational Science:
Simulation of Rare and Extreme Events
Oldenburg, Germany
15-26 August 2011

Hugo Touchette (QMUL)

_arge deviations

August 2011

1 / 74

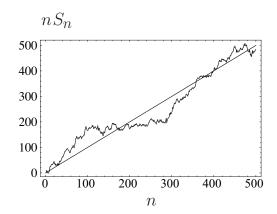
Outline

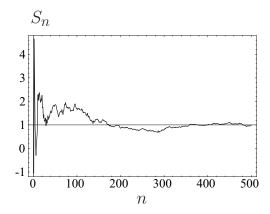
Themes

- Random variables / stochastic systems
- Most probable values / typical states
- Fluctuations around these states
- Small vs large deviations / fluctuations / rare events
- Large deviation theory
- 2 Applications
- Simulations I
- Simulations II
 - Lecture notes: arxiv:1106.4146
 - H. Touchette, The large deviation approach to statistical mechanics, Physics Reports 478, 1-69, 2009. arxiv:0804.0327

Example: Sum of Gaussian random variables

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(X_i = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$





Basic observations

- $S_n \to \mu$ in probability
- Fluctuations $\sim 1/\sqrt{n} \rightarrow 0$

Hugo Touchette (QMUL)

Large deviations

August 2011

4 / 74

Sum of Gaussian random variables (cont'd)

• Probability density function (pdf) of S_n :

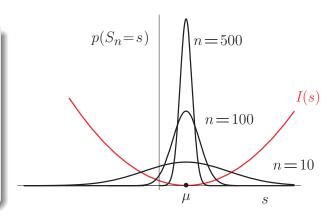
$$p(S_n = s) = \sqrt{\frac{n}{2\pi\sigma^2}}e^{-n(s-\mu)^2/(2\sigma^2)}$$

- Variance: $var(S_n) = \frac{\sigma^2}{n} \to 0$
- Dominant part:

$$p(S_n = s) \approx e^{-nI(s)}$$

Rate function:

$$I(s) = \frac{(s-\mu)^2}{2\sigma^2}$$



Hugo Touchette (QMUL)

Large deviations

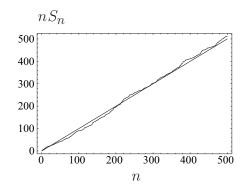
August 2011

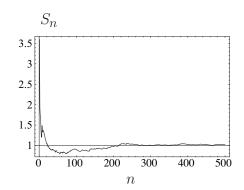
6 / 74

Example: Sum of exponential random variables

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

$$p(x) = \frac{1}{\mu}e^{-x/\mu}$$



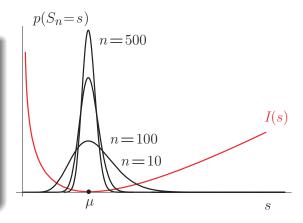


• Large deviation probability:

$$p(S_n = s) \approx e^{-nI(s)}$$

• Rate function:

$$I(s) = \frac{s}{\mu} - 1 - \ln \frac{s}{\mu}$$



Example: Random bits

• Sequence of bits:

$$\omega = \underbrace{010011100101}_{\text{n bits}}, \qquad egin{array}{l} P(0) = p_0 \ P(1) = p_1 = 1 - p_0 \end{array}$$

Empirical vector:

$$L_{n,0}(\omega) = rac{\# \ 0 ext{'s in }\omega}{n} \ L_n = (L_{n,0},L_{n,1}) \ L_{n,1}(\omega) = rac{\# \ 1 ext{'s in }\omega}{n} \
brace$$

• Example:

$$\omega = \underbrace{0001101001}_{n=10}, \qquad L_{10,0} = \frac{6}{10} = \frac{3}{5}$$
 $L_{10,1} = \frac{4}{10} = \frac{2}{5}$

Hugo Touchette (QMUL)

Large deviation

August 2011

8 / 74

Random bits (cont'd)

Probability of a sequence:

$$P(\omega) = p_0^{nL_{n,0}} p_1^{nL_{n,1}}$$

• Probability of \mathbf{L}_n :

$$P(\mathbf{L}_n = \boldsymbol{\mu}) = P(L_{n,0} = \mu_0, L_{n,1} = \mu_1)$$

$$= \frac{n!}{(n\mu_0)!(n\mu_1)!} p_0^{n\mu_0} p_1^{n\mu_1}$$

[Exercise 2.7.5]

Large deviation probability

$$P(\mathbf{L}_n = \boldsymbol{\mu}) \approx \mathrm{e}^{-nD(\boldsymbol{\mu})}, \quad D(\boldsymbol{\mu}) = \mu_0 \ln \frac{\mu_0}{\rho_0} + \mu_1 \ln \frac{\mu_1}{\rho_1}$$

- D = relative entropy
- Zero of *D*: $\mu = (p_0, p_1)$
- $L_n \rightarrow (p_0, p_1)$ in probability

Example: Spin system

Spin chain (configuration):

$$\omega = \underbrace{\omega_1, \omega_2, \dots, \omega_n}_{n \text{ spins}}, \quad \omega_i \in \{-1, +1\}$$

Mean magnetization:

$$M_n = \frac{1}{n} \sum_{i=1}^n \omega_i$$

• Density of states:

$$\Omega(m) = \#$$
 configurations ω with $M_n = m$

Large deviation form

$$\Omega(m) pprox e^{ns(m)}, \quad s(m) = -\frac{1-m}{2} \ln \frac{1-m}{2} - \frac{1+m}{2} \ln \frac{1+m}{2}$$

Hugo Touchette (QMUL)

Large deviations

August 2011

10 / 7/

Large deviation theory

• Random variable: A_n

• Probability density: $p(A_n = a)$

Large deviation principle (LDP)

$$p(A_n = a) \approx e^{-nI(a)}$$

• Meaning of \approx :

$$\lim_{n\to\infty} -\frac{1}{n} \ln p(a) = -nI(a) + o(n)$$

• Rate function: $I(a) \ge 0$

Goals of large deviation theory

- Prove that a large deviation principle exists
- Calculate the rate function

Hugo Touchette (QMUL)

Varadhan's Theorem

Exponential average:

$$\langle e^{nf(A_n)} \rangle = \int p(A_n = a) e^{nf(a)} da$$

• Assume LDP for A_n :

$$p(A_n = a) \approx e^{-nI(a)}$$

- Courant Institute
- Abel Prize 2007

Theorem: Varadhan (1966)

$$\lambda(f) = \lim_{n \to \infty} \frac{1}{n} \log \langle e^{nf(A_n)} \rangle = \max_{a} \{ f(a) - I(a) \}$$

Special case: f(a) = ka

$$\lambda(k) = \max_{a} \{ ka - I(a) \}$$

Hugo Touchette (QMUL)

Large deviations

August 2011

12 / 74

Heuristic derivation of Varadhan's result

Gärtner-Ellis Theorem

Scaled cumulant generating function (SCGF)

$$\lambda(k) = \lim_{n \to \infty} \frac{1}{n} \ln \langle e^{nkA_n} \rangle, \qquad k \in \mathbb{R}$$

Theorem: Gärtner (1977), Ellis (1984)

If $\lambda(k)$ is differentiable, then

Existence of LDP:

$$p(A_n = a) \approx e^{-nI(a)}$$

2 Rate function:

$$I(a) = \max_{k} \{ ka - \lambda(k) \}$$

- I(a) =Legendre transform of $\lambda(k)$
- I(a) convex in this case

- Richard S. Ellis
- UMass, USA

Hugo Touchette (QMUL)

Large deviations

August 2011

14 / 74

Exercise: Legendre transforms

[Exercise 2.7.8]

Contraction principle

LDP
$$A_n \longrightarrow B_n$$
 LDP?

• LDP for A_n :

$$p(A_n = a) \approx e^{-nI_A(a)}$$

- Contraction: $B_n = f(A_n)$
- Probability for B_n :

$$p(B_n = b) = \int_{f^{-1}(b)} p(A_n = a) \ da$$

Contraction principle

• LDP for B_n :

$$p(B_n = b) \approx e^{-nI_B(b)}$$

• Rate function:

$$I_B(b) = \min_{a:f(a)=b} I_A(a) = \min_{f^{-1}(b)} I_A(a)$$

Hugo Touchette (QMUL)

Large deviations

August 2011

16 / 74

Sums of IID random variables

Random variable:

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad X_i \sim p(x), \quad IID$$

SCGF:

$$\lambda(k) = \lim_{n \to \infty} \frac{1}{n} \ln \langle e^{nkS_n} \rangle = \lim_{n \to \infty} \frac{1}{n} \ln \left\langle \prod_{i=1}^n e^{kX_i} \right\rangle = \ln \langle e^{kX} \rangle$$

Gärtner-Ellis Theorem

$$I(s) = k(s)s - \lambda(k(s)), \qquad \lambda'(k(s)) = s$$

- I(s) is convex
- Zero of I(s) at $\langle X \rangle$
- Originally proved by Cramér (1938)

Example: Gaussian random variables

[Exercise 3.6.1]

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(X_i = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

Generating function:

$$\langle e^{kX}
angle = \ln \int_{-\infty}^{\infty} e^{kx} \, rac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} dx = e^{k\mu+\sigma^2k^2/2}$$

Log-generating function:

$$\lambda(k) = \ln\langle e^{kX} \rangle = k\mu + \frac{\sigma^2}{2}k^2$$

• Rate function:

$$I(s) = k(s)s - \lambda(k(s)) = \frac{(s-\mu)^2}{2\sigma^2}$$



Hugo Touchette (QMUL)

August 2011

18 / 74

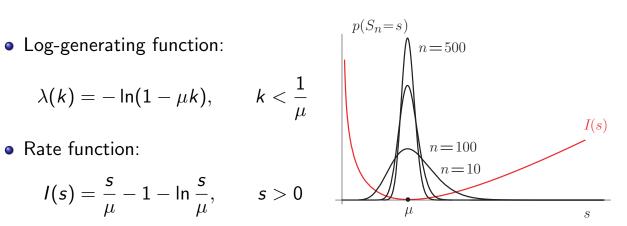
Example: Exponential random variables*

[Exercise 3.6.1]

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(X_i = x) = \frac{1}{\mu} e^{-x/\mu}, \quad x > 0$$

$$\lambda(k) = -\ln(1-\mu k), \qquad k < rac{1}{\mu}$$

$$I(s) = \frac{s}{\mu} - 1 - \ln \frac{s}{\mu}, \qquad s > 0$$



Example: Bernoulli sample mean

[Exercise 3.6.1]

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad egin{array}{l} X_i \in \{0,1\} \\ P(X_i = 1) = \alpha \\ P(X_i = 0) = 1 - \alpha \end{array}$$

Discrete RV:

$$S_n \in \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}$$

- Discrete probability distribution: $P(S_n = s)$
- ullet Values of S_n "fill" unit interval [0,1] as $n o\infty$
- Continuous-limit probability density:

$$p(S_n = s) = \frac{P(S_n \in [s, s + \Delta s])}{\Delta s}$$

• Smoothed pdf (weak convergence)

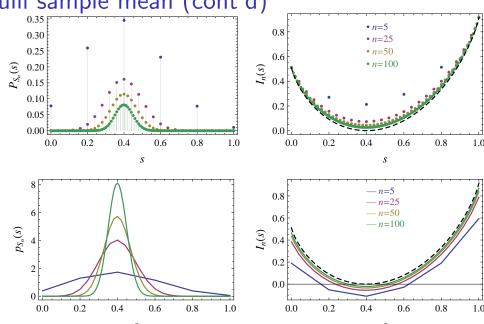
Hugo Touchette (QMUL)

Large deviations

August 2011

20 / 74

Bernoulli sample mean (cont'd)



- LDP: $p(S_n = s) \approx e^{-nI(s)}$
- Rate function:

$$I(s) = s \ln \frac{s}{\alpha} + (1-s) \ln \frac{1-s}{1-\alpha}$$

Example: Cauchy random variables*

[Exercise 3.6.1]

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(X_i = x) = \frac{1}{\pi} \frac{1}{x^2 + 1}, \quad x \in \mathbb{R}$$

• Generating function:

$$\lambda(k) = \begin{cases} 0 & k = 0 \\ \infty & k \neq 0 \end{cases}$$

- No large deviations
- I(s) = 0
- $P(S_n = s)$ has power-law tails (not exponential)

Hugo Touchette (QMUL)

Large deviations

August 2011

22 / 74

Sanov's Theorem

[Exercise 3.6.8]

- *n* IID random variables: $\omega = \omega_1, \omega_2, \dots, \omega_n$
- Empirical frequencies:

$$L_{n,j} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\omega_{i},j} = \frac{\# (\omega_{i} = j)}{n}$$

- Empirical vector: $\mathbf{L}_n = (L_{n,1}, L_{n,2}, \dots, L_{n,q})$
- SCGF:

$$\lambda(\mathbf{k}) = \ln \sum_{j=1}^q p_j \ e^{k_j}$$

Gärtner-Ellis Theorem

- LDP: $P(\mathbf{L}_n = \mu) \approx e^{-nD(\mu)}$
- Rate function: $D(\mu) = \mathbf{k}(\mu) \cdot \mu \lambda(\mathbf{k}(\mu)) = \sum_{j=1}^{q} \mu_j \ln \frac{\mu_j}{p_j}$

Markov processes

Donsker and Varadhan (1975)

• Markov chain:

$$\omega = \omega_1, \omega_2, \ldots, \omega_n, \quad p(\omega) = \rho(\omega_1)\pi(\omega_2|\omega_1)\cdots\pi(\omega_n|\omega_{n-1})$$

• Additive process:

$$S_n = \frac{1}{n} \sum_{i=1}^n f(\omega_i)$$

Gätner-Ellis Theorem

- Tilted transition matrix: $\pi_k(\omega_n|\omega_{n-1}) = \pi(\omega_n|\omega_{n-1})e^{kf(\omega_n)}$
- Dominant eigenvalue: $\zeta(\pi_k)$
- SCGF:

$$\lambda(k) = \ln \zeta(\pi_k)$$

• LDP:

$$p(S_n = s) \approx e^{-nI(s)}, \quad I(s) = \max_k \{ks - \lambda(k)\}$$

Hugo Touchette (QMUL)

Large deviations

August 2011

24 / 74

Exercise: SCGF for Markov chains

Example: Binary Markov chain*

[Exercise 3.6.10]

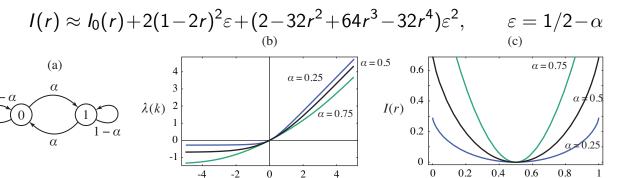
• Sample mean:

$$R_n = \frac{1}{n} \sum_{i=1}^n \omega_i, \qquad \omega_i \in \{0, 1\}$$

Transition matrix:

$$\Pi = \begin{pmatrix} \pi(0|0) \ \pi(0|1) \\ \pi(1|0) \ \pi(1|1) \end{pmatrix} = \begin{pmatrix} 1 - \alpha & \alpha \\ \alpha & 1 - \alpha \end{pmatrix}, \qquad \alpha \in (0,1)$$

• Rate function:



Hugo Touchette (QMUL)

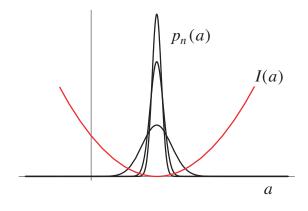
Large deviations

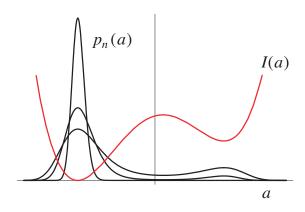
August 2011

26 / 74

General properties

- Most probable value = min and zero of I
- Zero of I = Law of Large Numbers
- Parabolic minimum = Central Limit Theorem





• $I(a) \neq \max_{k} \{ka - \lambda(k)\}$ when I is nonconvex [Exercise 3.6.2]

Summary

Large deviation principle

$$p(A_n = a) \approx e^{-nI(a)}$$

- Valid for uncorrelated and correlated processes
- Exponential term is dominant
- Describes small and large fluctuations
- Most probable value: min of I(a)
- Law of large numbers: min (zero) of I(a)
- Central limit theorem: Parabolic minimum of I(a)
- Methods for obtaining I(a):
 - Gärtner-Ellis Theorem
 - ► Contraction principle

Exercises

- \bullet 2.7.1 2.7.10
- \bullet 3.6.1 3.6.10

Hugo Touchette (QMUL)

Large deviations

August 2011

28 / 74

Continuous-time processes

- Stochastic process: x(t)
- Path pdf:

$$p[x] = p(\{x(t)\}_{t=0}^{T}) = \text{Probability of path } x(t)$$

- Turictional
- Observable: $A_T[x]$
- Observable distribution:

$$p(A_T = a) = \int_{x(t):A_T[x]=a} \mathcal{D}[x] p[x]$$

Problems

- Find $p(A_T = a)$
- Find most probable value of A_T
- Determine fluctuations around steady state
- Scaling limits:
 - Long-time: $T \to \infty$
 - Low noise

Low-noise limit of stochastic differential equations

• Dynamical system:

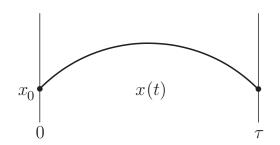
$$\dot{x}(t) = F(x(t))$$

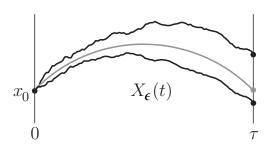
• Perturbed dynamics:

$$\dot{X}(t) = F(X(t)) + \underbrace{\sqrt{\epsilon} \, \xi(t)}_{\text{perturbation}}$$

- Low-noise limit: $\epsilon \to 0$
- Gaussian white noise:

$$\langle \xi(t) \rangle = 0, \quad \langle \xi(t)\xi(t') \rangle = \delta(t-t')$$





Hugo Touchette (QMUL)

Large deviations

August 2011

31 / 74

Exercise: Simulating SDEs

LDP for the random paths

Functional LDP

$$p[x] \approx e^{-J[x]/\epsilon}, \qquad J[x] = \underbrace{\frac{1}{2} \int_0^T \underbrace{\left[\dot{x}(t) - F(x(t))\right]^2 dt}_{\text{Lagrangian}}}_{\text{Action}}$$

- Low-noise limit: $\epsilon \to 0$
- Derived in maths by Freidlin and Wentzell (1984)
- Derived in physics by Onsager and Machlup (1953)
- Zero of J[x] = most probable dynamics = unperturbed dynamics:

$$\dot{x}^* = F(x^*)$$

• Gaussian fluctuations around $x^*(t)$

Hugo Touchette (QMUL)

_arge deviations

August 2011

33 / 74

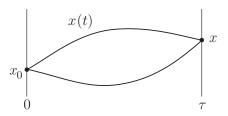
Exercise: Derivation of the action

Other LDPs by contraction

• Transition probability:

$$p(x, T|x_0) \approx e^{-V(x, T|x_0)/\epsilon}$$

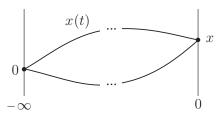
 $V(x, T|x_0) = \min_{x(t):x(0)=x_0, x(T)=x} J[x]$



Stationary distribution:

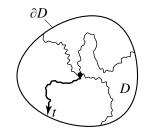
$$p(x) \approx e^{-V(x)/\epsilon}$$

$$V(x) = \min_{x(t): x(-\infty) = 0, x(0) = x} J[x]$$



• Exit time:

$$au_{\epsilon} pprox e^{V^*/\epsilon}$$
 in probability $V^* = \min_{x \in \partial D} \min_{t \geq 0} V(x, t|x_s)$



Hugo Touchette (QMUL)

Large deviations

August 2011

35 / 74

Example: Ornstein-Uhlenbeck process

[Exercise 3.6.14]

• System:

$$\dot{x}(t) = -\gamma x(t) + \sqrt{\epsilon} \, \xi(t)$$

Stationary distribution:

$$p(x) \approx e^{-V(x)/\epsilon}, \qquad V(x) = \min_{x(t):x(0)=x_0,x(\infty)=x} I[x]$$

• Euler-Lagrange equation:

$$\delta I[x^*] = 0 \iff \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0, \quad L = \frac{1}{2} (\dot{x} + \gamma x)^2$$

• Solution: $V(x) = I[x^*] = \gamma x^2$

General result

$$\dot{x} = -U'(x) + \sqrt{\epsilon} \, \xi(t) \implies V(x) = 2U(x)$$

Hugo Touchette (QMUL)

Large deviations

August 2011

Example: Noisy Van der Pol oscillator*

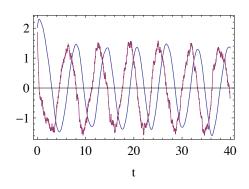
[Exercise 3.6.17]

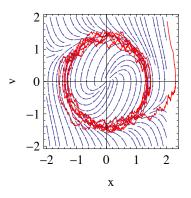
• Equations of motion:

$$\dot{x} = v$$

$$\dot{v} = -x + v(\alpha - x^2 - v^2) + \sqrt{\epsilon} \, \xi(t)$$

- Coupled Langevin equations
- ▶ Bifurcation: Stable fixed point (α < 0) to stable limit cycle (α > 0)





• Stationary distribution: $p(r, \theta) \approx e^{-W(r)/\epsilon}$

Hugo Touchette (QMUL)

Large deviations

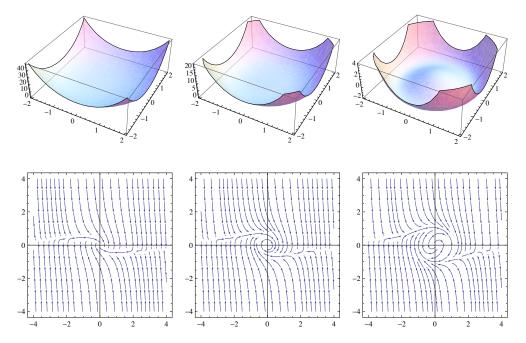
August 2011

37 / 74

Noisy Van der Pol oscillator (cont'd)

Solution:

$$W(r) = -\alpha r^2 + \frac{r^4}{2}$$



Hugo Touchette (QMUL)

Large deviation:

Long-time limit of additive observables

- Stochastic process: x(t)
- Observable:

$$A_T[x] = \frac{1}{T} \int_0^T f(x(t)) dt$$

Gärtner-Ellis

• SCGF:

$$\lambda(k) = \lim_{T \to \infty} \frac{1}{T} \ln \langle e^{TkA_T} \rangle, \qquad \langle e^{TkA_T} \rangle = \int \mathcal{D}[x] \, p[x] \, e^{TkA_T[x]}$$

• Rate function: $I(a) = \max_{k} \{ka - \lambda(k)\}$

Donsker-Varadhan

- Generator: L
- Tilted generator: $L_k = L + kf$
- SCGF: $\lambda(k) = \zeta(L_k)$

Hugo Touchette (QMUL)

Large deviations

August 2011

39 / 74

Example: Pulled Brownian particle

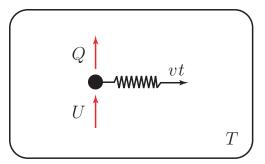
[Exercise 3.6.18]

Langevin dynamics:

$$m\ddot{x}(t) = \underbrace{-\alpha\dot{x}}_{\text{drag}} \underbrace{-k[x(t)-vt]}_{\text{spring force}} + \underbrace{\xi(t)}_{\text{noise}}$$

Work:

$$W_T = rac{1}{T} \int_0^T F(t) v \ dt = \Delta U + Q_T$$



Large deviation principle

• SCGF:

$$\lambda(k) = \lim_{T o \infty} rac{1}{T} \ln \langle e^{TkW_T}
angle = ck(1+k), \qquad c = v^2$$

• Rate function:

$$I(w) = \max_{k} \{kw - \lambda(k)\} = \frac{(w - c)^2}{4c}$$

Summary

Path LDPs

$$p[x] \approx e^{-I[x]/\epsilon}$$
 $p(A_T[x] = a) \approx e^{-TI(a)}$

- LDPs for time-evolving or steady-state processes
- Describes most probable state (or trajectory)
- Describes fluctuations around most probable states
- Most probable state = zero of I = min of I
- Most probable state given by variational principle

Connection with classical mechanics

$$\delta I[x^*] = 0 \implies \begin{cases} \text{Euler-Lagrange equation} \\ \text{Hamiltonian equation} \\ \text{Hamiltonian-Jacobi equation} \end{cases}$$

Exercises

 \bullet 3.6.11 - 3.6.18

Hugo Touchette (QMUL)

Large deviations

August 2011

41 / 74

Other applications

- Equilibrium statistical mechanics
- Multifractals
- Chaotic systems (thermodynamic formalism)
- Disorded systems
 - Random walks in random environments
 - Spin glasses
 - Quenched/annealed large deviations
- Nonequilibrium systems
- Interacting particle models
 - Zero-range process
 - Exclusion process
 - Current, density profile
 - Fluctuation relations
 - Space/time large deviations

Equilibrium many-particle systems

- N particles
- Microstate: $\omega = \omega_1, \omega_2, \dots, \omega_N$
- Space of one particle: $\omega_i \in \Lambda$
- Space of N particles: $\Lambda_N = \Lambda^N$
- Probability distribution on Λ_N : $P(\omega)$
- Macrostate: $M_N(\omega)$
- Probability distribution for M_N :

$$P(M_N = m) = \sum_{\omega: M_N(\omega) = m} P(\omega)$$

Problems

- Find $P(M_N = m)$
- Find most probable values of M_N (= equilibrium states)
- Study fluctuations around most probable value
- ullet Consider thermodynamic limit $N o \infty$

Hugo Touchette (QMUL)

Large deviations

August 2011

43 / 74

Thermodynamic LDPs

Ensembles

Microcanonical

Canonical

$$P_u(M_N=m)\approx e^{-NI_u(m)}$$

$$P_{\beta}(M_N=m)\approx e^{-NI_{\beta}(m)}$$

- Generalize and refine Einstein's theory of fluctuations
- Equilibrium and fluctuation properties given by rate function
- Equilibrium states = min of I(m) = zero of I(m)
- Equilibrium states given by variational principles

Entropy

$$P(U_N = u) \approx e^{Ns(u)}, \qquad s(u) = \min_{\beta} \{\beta u - \varphi(\beta)\}$$

- Legendre transform of thermo = Legendre transform of LDT
- Legendre transform is valid only if s(u) is concave

Problem

- Sequence of RVs: $\omega = X_1, X_2, \dots, X_n$
- Observable (RV): $S_n(\omega)$
- Probability density:

$$p(S_n = s) = \frac{P(S_n \in [s, s + \Delta s])}{\Delta s} = \frac{P(S_n \in \Delta_s)}{\Delta s}$$

Goals

- Sample S_n
- 2 Estimate $p(S_n = s)$

- $n \to \infty$ $\Delta s \to 0$
- Test existence of LDP
- 4 Estimate rate function I(s)

Continuous-time problem: Time discretization

$$\{X(t)\}_{t=0}^{\tau} \longrightarrow \{X_i\}_{i=1}^n, \quad X_i = X(i\Delta t)$$

Hugo Touchette (QMUL)

Large deviations

August 2011

46 / 74

Direct estimators

• Configuration sample:

$$\{\omega^{(1)}, \omega^{(2)}, \dots, \omega^{(L)}\}$$

- ightharpoonup L copies or realizations of ω
- ▶ Prior pdf: $p(\omega)$
- Observable sample:

$$\{s^{(1)}, s^{(2)}, \dots, s^{(L)}\}, \qquad s^{(j)} = S_n(\omega^{(j)})$$

• Estimator of $p(S_n = s)$:

$$\hat{
ho}(s) = rac{\hat{P}(\Delta_s)}{\Delta s} = rac{1}{L\Delta s} \sum_{j=1}^L \mathbf{1}_{\Delta_s}(s^{(j)}).$$

- Empirical pdf
- ▶ Unbiased estimator [Exercise 4.7.3]

Exercise: What is an empirical pdf?

Hugo Touchette (QMUL)

Large deviations

August 2011

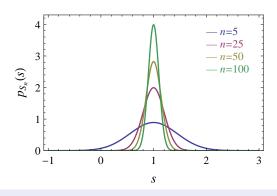
48 / 74

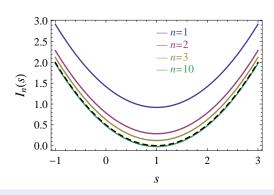
Direct estimators (cont'd)

• Estimator of rate function:

$$\hat{I}(s) = -\frac{1}{n} \ln \hat{p}(s)$$

- Estimate $\hat{p}(s)$ for fixed L and n
- 2 Estimate $\hat{I}(s)$ for fixed L and n
- \odot Repeat for increasing values of n





Use large enough L to get good statistics

Hugo Touchette (QMUL)

Problem with direct sampling

- $p(S_n = s) \approx e^{-nI(s)}$
- ullet Event $S_n=s$ (or $S_n\in\Delta_s$) is exponentially rare
- Choose $L \sim e^{nI(s)}$ to see this event
- L exponential with n

Solution: Importance sampling

- Sample ω with another pdf $q(\omega)$
- Choose $q(\omega)$ to make $S_n = s$ probable
- Correct estimation of $p(S_n = s)$ according to $q(\omega)$ chosen

Hugo Touchette (QMUL)

_arge deviations

August 2011

50 / 74

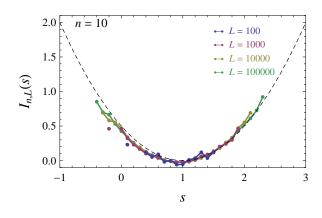
Example: Gaussian sample mean

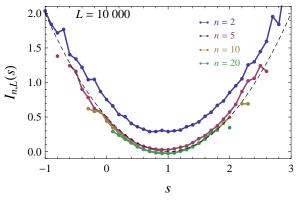
[Exercise 4.7.2]

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(X_i = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

- Generate $x_1, x_2, \ldots, x_n \sim$ Gaussian variates
- \bigcirc Compute S_n
- **3** Repeat L times to obtain sample $\{s^{(1)}, s^{(2)}, \dots, s^{(L)}\}$
- 4 Compute $\hat{p}(s)$ of sample
- **5** Compute $\hat{I}(s)$
- Repeat for different n and L

Gaussian sample mean (cont'd)





- Increase *L* to sample tails
- Increase *L* to smooth results (smaller error bars) [Exercise 4.7.4] [Exercise 4.7.5]
- Increase *L* for increasing *n*
- Choose $L \sim e^n$

Hugo Touchette (QMUL)

Large deviations

August 2011

52 / 74

Importance sampling

- Original sampling pdf: $p(\omega)$
- New sampling pdf: $q(\omega)$

New estimator

$$\hat{q}(s) = rac{1}{L\Delta s} \sum_{j=1}^{L} \mathbf{1}_{\Delta_s} \left(S_n(\omega^{(j)}) \right) \frac{R(\omega^{(j)})}{R(\omega^{(j)})}$$

- Importance sampling or likelihood ratio: $R(\omega) = \frac{p(\omega)}{q(\omega)}$
- $\hat{q}(s)$ is unbiased:

$$\langle \hat{q}(s) \rangle_{q} = \langle \hat{p}(s) \rangle_{p} = p(S_{n} = s)$$

• $\hat{q}(s)$ may have smaller variance than $\hat{p}(s)$

Choose q such that $var_q(\hat{q}) < var_p(\hat{p})$

Exercise: Derivation of new estimator

Hugo Touchette (QMUL)

Large deviations

August 2011

54 / 74

Exponential change of measure

- Original sampling pdf: $p(\omega)$
- Exponentially tilted pdf:

$$p_k(\omega) = rac{e^{nkS_n(\omega)}}{W_n(k)}p(\omega), \qquad k \in \mathbb{R}$$

• Generating function:

$$W_n(k) = \langle e^{nkS_n} \rangle_p = \int e^{nkS_n(\omega)} p(\omega) d\omega$$

Likelihood ratio:

$$R(\omega) = \frac{p(\omega)}{p_k(\omega)} = e^{-nkS_n(\omega)} W_n(k) \approx e^{-n[kS_n(\omega) - \lambda(k)]}$$

- $p_k(\omega)$ is efficient
- Zero-variance estimator as $n \to \infty$
- How to choose *k*?

Example: Gaussian sample mean

[Exercise 4.7.9]

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(\omega) = \prod_{i=1}^m p(X_i), \quad p(X_i = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

- Choose $k \in \mathbb{R}$
- Generate variate x_1, x_2, \ldots, x_n according to tilted pdf:

$$p_k(x_i) = \frac{e^{kx_i}p(x_i)}{W(k)} = \frac{e^{-(x_i-\mu-\sigma^2k)^2/(2\sigma^2)}}{\sqrt{2\pi\sigma^2}}$$

- Compute S_n
- Repeat L times to obtain sample $\{s^{(1)}, s^{(2)}, \dots, s^{(L)}\}$
- Compute $\hat{q}(s)$
- Compute $\hat{I}(s)$
- Repeat for $k \in [k_{\min}, k_{\max}]$

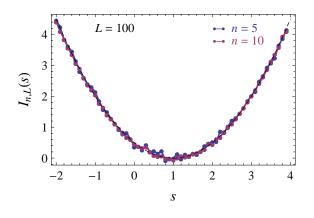
Hugo Touchette (QMUL)

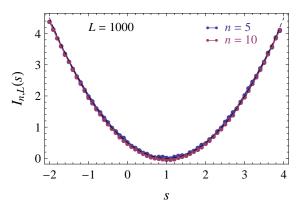
Large deviations

August 2011

56 / 74

Gaussian sample mean (cont'd)





- p_k is efficient to recover I(s) at $s = \lambda'(k)$
- Scan $k \in [k_{\sf min}, k_{\sf max}]$ to obtain desired range $s \in [s_{\sf min}, s_{\sf max}]$
- Non-parametric: choose k such that $s = \lambda'(k)$ to obtain l at s

Gaussian sample mean (cont'd)

• SCGF:

$$\lambda(k) = \mu k + \frac{1}{2}\sigma^2 k^2$$

• Concentration point:

$$\lambda'(k) = \mu + \sigma^2 k = s \quad \Rightarrow \quad k(s) = \frac{s - \mu}{\sigma^2}$$

• Explicit form of tilted pdf:

$$p_{k(s)}(x_i) = \frac{e^{-(x_i-s)^2/(2\sigma^2)}}{\sqrt{2\pi\sigma^2}}$$

Importance sampling interpretation

 $S_n = s$ large deviation under $p(\omega)$

 $S_n = s$ typical event under $p_{k(s)}(\omega)$

Hugo Touchette (QMUL)

Large deviations

August 2011

58 / 74

Metropolis (Monte Carlo) sampling

Problem

- Tilted pdf p_k involves $W_n(k)$
- Tilted pdf p_k assumes knowledge of SCGF $\lambda(k)$
- Knowledge of SCGF $\Rightarrow I(s)$

Solutions

- Use other types of estimators
- 2 Use Metropolis (Monte Carlo) sampling with p_k
 - ▶ Based on $p_k(\omega)/p_k(\omega')$
 - Free of $W_n(k)$ and $\lambda(k)$

[Exercise 4.7.11]

Exercise: Illustration of Metropolis sampling

Hugo Touchette (QMUL)

Large deviations

August 2011

60 / 74

Application to SDEs

Path pdf form

- Original path pdf: p[x]
- Tilted pdf:

pdf:

$$p_k[x] = \frac{e^{TkS_T[x]} p[x]}{W_T(k)} \approx e^{-TI_k[x]}, \qquad W_T(k) = \langle e^{TkS_T} \rangle_p$$

Transition probability form

- Original transition matrix: $\Pi(\Delta t)$
- Tilted transition matrix:

$$\Pi_k(\Delta t) = rac{e^{k\Delta t x'}\Pi(\Delta t)}{e^{\lambda(k)\Delta t}} = e^{[kx'+G-\lambda(k)]\Delta t}$$

Generator form

- Original generator: G
- Tilted generator: $G_k = G + kx' \lambda(k)$

Example: Gaussian additive process

• SDE: $\dot{x}(t) = \xi(t)$

• Pure Brownian motion without drift

Observable:

$$D_T[x] = \frac{1}{T} \int_0^T \dot{x}(t) dt = \frac{x(T)}{T}$$

Intuitive observations

• Typical state: $D_T = 0$

• Modified process with typical state $D_T = d$:

$$\dot{x}(t) = d + \xi(t)$$

• Effective dynamics for large deviation

• Explicit result:

$$I_{k(d)}[x] = I[x] - dD_T[x] + \frac{d^2}{2} = \frac{1}{2T} \int_0^T (\dot{x} - d)^2 dt,$$

Hugo Touchette (QMUL)

Large deviation:

August 2011

62 / 74

Exercise: Simulation of SDEs

Summary

- Direct sampling of S_n with $p(\omega)$ inefficient
- Requires exponential sample size L
- Change sampling distribution to $q(\omega)$
- Make rare event under p more probable under q
- Possible change of measure: Exponential measure
- Exponential sampling efficient
- Subexponential sample size
- Structure of exponential measure = structure of LDT
- Combine exponential sampling with Metropolis sampling
- Other methods?

Hugo Touchette (QMUL)

Large deviations

August 2011

64 / 74

Sample mean method

Sample
$$\lambda(k)$$
 instead of $p(S_n = s)$

• Sampling with $p(\omega)$:

$$S_n \rightarrow \lambda'(0)$$
 in probability

• Sampling with $p_k(\omega)$:

$$S_n \to \lambda'(k)$$
 in probability

• Estimator of S_n :

$$\hat{s}(k) = \frac{1}{L} \sum_{j=1}^{L} S_n(\omega^{(j)})$$

• Estimator of $\lambda(k)$:

$$\hat{\lambda}(k) = \int_0^k \hat{s}(k') \, dk'$$

- Compute $\hat{I}(s)$ by Legendre transform
- No need to estimate \hat{p}

Hugo Touchette (QMUL)

Example: Gaussian sample mean

[Exercise 5.4.1]

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(\omega) = \prod_{i=1}^m p(X_i), \quad p(X_i = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

- Choose $k \in \mathbb{R}$
- Generate variates x_1, x_2, \dots, x_L according to tilted pdf:

$$p_k(x_i) = \frac{e^{kx_i}p(x_i)}{W(k)} = \frac{e^{-(x_i-\mu-\sigma^2k)^2/(2\sigma^2)}}{\sqrt{2\pi\sigma^2}}$$

- Compute \$\hat{s}\$ for \$L\$ large
- Repeat for different k
- Integrate results to obtain $\hat{\lambda}(k)$
- ullet Obtain \hat{I} by Legendre transform

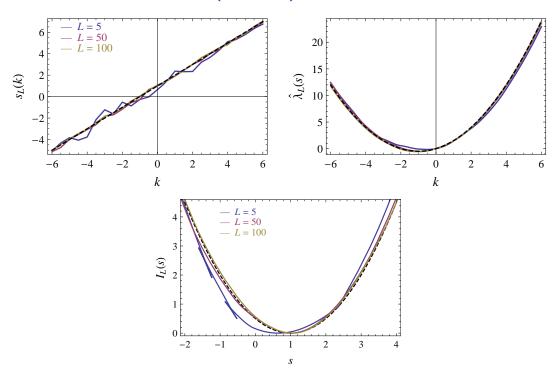
Hugo Touchette (QMUL)

Large deviations

August 2011

67 / 74

Gaussian sample mean (cont'd)



- No empirical pdf calculated
- Non-convex artefacts for small $L\left(\hat{\lambda}(k) \text{ not convex}\right)$

Empirical generating function

- IID sample mean: $\lambda(k) = E[e^{kX}]$
- Estimator for $\lambda(k)$:

$$\hat{\lambda}(k) = \ln \frac{1}{L} \sum_{j=1}^{L} e^{kX^{(j)}}$$

• Alternative estimator:

$$\hat{s}(k) = \hat{\lambda}'(k) = \frac{\sum_{j=1}^{L} X^{(j)} e^{kX^{(j)}}}{\sum_{j=1}^{L} e^{kX^{(j)}}}$$

• Markov chain:

$$\underbrace{X_1 + \cdots + X_b}_{Y_1} + \underbrace{X_{b+1} + \cdots + X_{2b}}_{Y_2} + \cdots + \underbrace{X_{n-b+1} + \cdots + X_n}_{Y_m}$$

• Markov estimator:

$$\hat{\lambda}(k) = \frac{1}{b} \ln \frac{1}{L} \sum_{i=1}^{L} e^{kY^{(i)}}, \qquad m = \frac{n}{b}$$

Hugo Touchette (QMUL)

Large deviations

August 2011

69 / 74

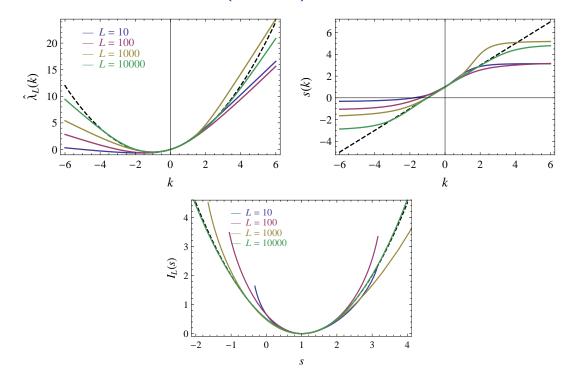
Example: Gaussian sample mean

[Exercise 5.4.2]

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad p(\omega) = \prod_{i=1}^m p(X_i), \quad p(X_i = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

- Choose $k \in \mathbb{R}$
- Generate variates x_1, x_2, \dots, x_L according to original pdf $p(x_i)$
- Compute $\hat{\lambda}(k)$ for L large
- Repeat for different k
- Obtain \hat{I} by Legendre transform
- Repeat for larger L

Gaussian sample mean (cont'd)



- Efficient for RVs with bounded support [Exercise 5.4.2]
- Less efficient for unbounded RVs

Hugo Touchette (QMUL)

Large deviations

August 2011

71 / 74

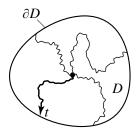
Application for SDEs*

[Exercise 5.4.3]

Other methods

Optimal path methods

$$p(x, T|x_0) \approx e^{-V(x, T|x_0)/\epsilon} V(x, T|x_0) = \min_{x(t):x(0)=x_0, x(T)=x} J[x]$$



- ► [Exercise 5.4.4 5.4.6]
- Transition path method
 - Monte Carlo for paths
 - See Christoph Dellago
- Splitting / cloning methods
 - See notes for references
- Eigenvalue method

 $\lambda(k) = \text{dominant eigenvalue of tilted generator } G_k$

See notes for references

Hugo Touchette (QMUL)

Large deviations

August 2011

73 / 74

Reading

H. Touchette

The large deviation approach to statistical mechanics Physics Reports 478, 1-69, 2009 arxiv:0804.0327

Y. Oono

Large deviation and statistical physics Prog. Theoret. Phys. Suppl. 99, 165-205, 1989

Introduction to Rare Event Simulation Springer, New York, 2004