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Outline

Themes
@ Random variables / stochastic systems
@ Most probable values / typical states
@ Fluctuations around these states

@ Small vs large deviations / fluctuations / rare events

@ Large deviation theory
9 Applications

© Simulations |

@ Simulations I

@ Lecture notes: arxiv:1106.4146

@ H. Touchette, The large deviation approach to statistical mechanics,
Physics Reports 478, 1-69, 2009. arxiv:0804.0327
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Example: Sum of Gaussian random variables

n
1 1 IRy 2
Sn=->Y_Xi p(Xi = x) = —=—=e b /een)
n Py \V2mo
nsSy, Sn
500
4
400
3
200 1
N o
100 0
0 -1
0 100 200 300 400 500 0 100 200 300 400 500

Basic observations
@ S, — w in probability
@ Fluctuations ~1/y/n — 0

Hugo Touchette (QMUL) Large deviations August 2011 4/ 74

Sum of Gaussian random variables (cont'd)
@ Probability density function (pdf) of S:

n —n(s— o
p(Sn = 5) = 277026 (s M)2/(2 2)

0.2

e Variance: var(S,) = — — 0
n

@ Dominant part:
p(Sn=s)~ e )

@ Rate function:

i(s) = : 7
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Exercise: Calculation of p(S,) via generating functions
[Exercise 2.7.1]
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Example: Sum of exponential random variables
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@ Large deviation probability:
p(Sn=s)~e ")
@ Rate function:

S S
I[(s) = ——1—1In—
(s) . .

v
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Example: Random bits

@ Sequence of bits:

P(0) = po
— 010011100101,

n bits
@ Empirical vector:
O'sinw )
Lno(w) = #f
> I-n — (Ln,07Ln 1)
1'sinw
Lni(w) = #lsinw
n y
e Example:
6 3
= 0001101001 L = — ==
W =\ ) 10,0 10 5
n=10
4 2
L = — = —
N TR
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Random bits (cont'd)

@ Probability of a sequence:

L, L,
P(w)=py ""pi "

@ Probability of L,:

P(Ln - #’) = P(Ln,O = Ho, Ln,l = Ml)

_ n! npo N
(no) ()10 P1

[Exercise 2.7.5]

Large deviation probability

P(Ly =) ~ e"™P®), D(p) = poIn 22 4 piy1n 22
Po P1
@ D = relative entropy

@ Zero of D: p = (po, p1)
@ L, — (po, p1) in probability
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Example: Spin system
@ Spin chain (configuration):

W =Wwi,wp, ..., Wp, Wj€ {-1,+1}
n spins

@ Mean magnetization:
1 n
i=1
@ Density of states:
Q(m) = # configurations w with M, = m

Large deviation form

1— 1-— 1 1
Q(m) ~ e™(m™  s(m)=— 2m|n 2m_ zmln —;m
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Large deviation theory

@ Random variable: A,
@ Probability density: p(A, = a)

Large deviation principle (LDP)

p(An = a) ~ e~

@ Meaning of ~:
Inp(a) = —nl(a) + o(n)
lim 1 Inp(a) = I(a)

n—oo n

@ Rate function: /(a) >0

Goals of large deviation theory

© Prove that a large deviation principle exists

@ Calculate the rate function
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Varadhan's Theorem

@ Exponential average:

<enf(A,,)> _ /P(An _ a) enf(a) da

@ Assume LDP for A,:

P(Ay = a) ~ e = A
@ Courant Institute
@ Abel Prize 2007

Theorem: Varadhan (1966)

A(f) = lim 1|og<e'"’<An>> = max{f(a) — /(a)}

n—oo N

Special case: f(a) = ka

Ak) = mgx{ka —1(a)}

v

Hugo Touchette (QMUL) Large deviations August 2011 12 / 74

Heuristic derivation of Varadhan's result
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Gartner-Ellis Theorem

Scaled cumulant generating function (SCGF)

1
AK) = lim =In(e™)  keR

n—oo N

Theorem: Gartner (1977), Ellis (1984)
If A(k) is differentiable, then
@ Existence of LDP:

P(An _ a) ~ e—nl(a)

@ Rate function:
@ Richard S. Ellis

I(a) = ml?x{ka — A(k)} @ UMass, USA

@ /(a) = Legendre transform of A(k)
@ /(a) convex in this case
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Exercise: Legendre transforms
[Exercise 2.7.8]
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Contraction principle

LDP A, — B, LDP? J

e LDP for A,:

e Contraction: B, = f(A,)
@ Probability for B,:

p(B, = b) = /f_ p(A, = a) da

Contraction principle
e LDP for B,:
p(B, = b) ~ e~ nls(b)
@ Rate function:

I(b) = a:;?;)lb Ia(a) = fﬂi(f))) Ia(a)
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Sums of 1ID random variables

@ Random variable:
1 n
Sn == ;X;, Xi ~ p(x), 1D
1=

e SCGF:

n

A(k) = lim E In(ekSn) L In <H ekX"> = In(e®X)

= |lim —
n—oo N n—oo n
i=1
Gartner-Ellis Theorem

I(s) = k(s)s — A(k(s)), N(k(s))=s

@ /(s) is convex
@ Zero of I(s) at (X)
@ Originally proved by Cramér (1938)
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Example: Gaussian random variables
[Exercise 3.6.1]

1 < 1 2 110 2
- ; piXi=x) = =

@ Generating function:

>C 1 2 2 2,2
kX kx —(x—p)2/(202) kpt+o?k?)2
e = In/ e e dx = e
< > —00 V 27‘(‘0’2

@ Log-generating function: p(Sn=5)

2

A(k) = In(e) = ku + %/8

@ Rate function:

(s — p)?

I(s) = k(s)s—M(k(s)) = ——H/
(s) = k(s)s=Alk(s)) =
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Example: Exponential random variables*

[Exercise 3.6.1]

@ Log-generating function:
1
A(k) = —In(1 — pk), k < —
i
@ Rate function:
I(s)zi—l—lni, s>0

f ft
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Example: Bernoulli sample mean
[Exercise 3.6.1]
1 X € {0, 1}
S”ZE_ZX"’ P(Xi=1) =«
-1 P(Xi=0)=1-«

@ Discrete RV:

1 2 —1
SnE{O,—,—,...,n ,1}

n’ n n
@ Discrete probability distribution: P(S, = s)
@ Values of S, “fill" unit interval [0,1] as n — oo

@ Continuous-limit probability density:

 P(S, € [s,5+ As])

p Sp=35)=
( ) Ao
@ Smoothed pdf (weak convergence)
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Bernoulli sample mean (cont'd)
030F ] 08| = K3
025¢ 1 ] «n=50
. 06] ]
@ 0wl e « =100 . )"’
o o1st i ZE o4f r ]
0107, . -.';..;'. . . 1 0.2f ’ ;
005} o ]
0.00 ittt | || Nttt : ook ]
00 02 04 06 08 10 10
S S
o
6,
@) D
g4 =
2,
ok

0.0 0.2 0.4 0.6 0.8 1.0
S S

o LDP: p(S, =s)~ e ")
@ Rate function:

S 1
I(s)=sln—+4+(1—5)]I
(s) sna—l—( S)nl—a
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Example: Cauchy random variables™*

[Exercise 3.6.1]

1 ¢ 1 1
Sn = E;X"’ PXi=x) =~ x€R
1=
@ Generating function:
0 k=0

(k) = { oo k#0
@ No large deviations
@ /(s)=0
@ P(S, = s) has power-law tails (not exponential)
Hugo Touchette (QMUL) Large deviations August 2011

Sanov's Theorem
[Exercise 3.6.8]

@ n |ID random variables: w = wi, w7, ..., w,
@ Empirical frequencies:

1 # (wi =)
i = 2 = T
e Empirical vector: L, = (Lp1,Ln2,...,Lng)
o SCGF: q
A(k) =1In) pj e
j=1

Gartner-Ellis Theorem
o LDP: P(L, = p) ~ e~ "P(1)

@ Rate function: D(u) = k(p) - p — A(k(p)) = Z:“j In &

j=1 I

22 /74
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Markov processes
Donsker and Varadhan (1975)

@ Markov chain:
W= w1, w2,...,Wn, P(W) = P(wl)ﬂ(wz\wl) T 7T(wn|wn—1)

@ Additive process:
1 n

Gatner-Ellis Theorem
o Tilted transition matrix: m(wp|wn—1) = m(wn|wp—1)ek«n)

@ Dominant eigenvalue: ((my)

o SCGF:
A(k) = In¢(my)
e LDP:
p(Sp=s)~ e G I(s) = max{ks — A(k)}
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Exercise: SCGF for Markov chains
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Example: Binary Markov chain*
[Exercise 3.6.10]

@ Sample mean:
1 n
Rn - - i i 071
n;w wi € {0,1}

@ Transition matrix:

= (G ran) = (a1 ) s

@ Rate function:

I(r) ~ Io(r)—|—2(1—2r)25—|—(2—32r2—|—64r3—32r4)52, e=1/2—«
(b)

(a)
4 a=025
a 3
l-a 5
sogosIlE
l-a
o 0
-1
4 2 0 2 4
k r
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General properties

@ Most probable value = min and zero of /
@ Zero of | = Law of Large Numbers
@ Parabolic minimum = Central Limit Theorem

Pn(a@) Pn(a@)
I(a)

N \/

~

I ——

a a

o /(a) # mfx{ka — A(k)} when [ is nonconvex
[Exercise 3.6.2]
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Summary

Large deviation principle

p(A, = a) = e~ ")

@ Valid for uncorrelated and correlated processes
@ Exponential term is dominant

@ Describes small and large fluctuations

@ Most probable value: min of /(a)

@ Law of large numbers: min (zero) of /(a)

°
°

Central limit theorem: Parabolic minimum of /(a)
Methods for obtaining /(a):

» Gartner-Ellis Theorem

» Contraction principle

Exercises
@ 2.7.1-27.10
@ 3.6.1 —-3.6.10
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Continuous-time processes

@ Stochastic process: x(t)
e Path pdf:

plx] = p({x(t)}[_) = Probability of path x(t)
~~

functional

@ Observable: Ar[x]
@ Observable distribution:

plar=2)= | DIx] plx
x(t):Ar[x]=a
Problems
e Find p(Ar = a)

@ Find most probable value of At

@ Determine fluctuations around steady state

@ Scaling limits:
Long-time: T — o0
Low noise

Hugo Touchette (QMUL) Large deviations August 2011 30 /74




Low-noise limit of stochastic differential equations

@ Dynamical system:
x(t) = F(x(t))

@ Perturbed dynamics:

X(t) = F(X(1)) + Ve&(t)
——

perturbation

@ Low-noise limit: ¢ — 0
@ Gaussian white noise:

(€(1)) =0, (&()&(t)) = o(t —t)

o/_a)\ o Xe(t

0 T 0 T
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Exercise: Simulating SDEs

Hugo Touchette (QMUL) Large deviations August 2011 32 /74




LDP for the random paths

Functional LDP

)
Pl ~ e~ Ble gl = % /0 (0 — Fx()P de

Lagrangian

~"

Action

7

Low-noise limit: € — 0
Derived in maths by Freidlin and Wentzell (1984)
Derived in physics by Onsager and Machlup (1953)

Zero of J[x] = most probable dynamics = unperturbed dynamics:

Gaussian fluctuations around x*(t)
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Exercise: Derivation of the action
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Other LDPs by contraction

@ Transition probability: (1)
p(x, Tlx) & e~ Vi Tho/e O
.I’O'
V(x, T|xp) = min J[x
( | 0) x(t):x(0)=xo,x(T)=x [ ] 0 T

@ Stationary distribution:

z(t)
p(x) ~ e~ V(X)/e < 7' )
0

= min
x(t):x(—00)=0,x(0)=x 00 0

oD

7. ~ €Y'/ in probability ! .
V* = min min V(x,t
s v o S
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@ Exit time:

Q

Example: Ornstein-Uhlenbeck process
[Exercise 3.6.14]

@ System:
() = —yx(t) + Veg(t)

@ Stationary distribution:

p(x) ~ e Ve V(x) = min Ix]

x(t):x(0)=xp,x(c0)=x

@ Euler-Lagrange equation:

*1 o= = _1 2
i[x*]=0 <= 7 Ix 8X_0’ L—2(X+’)/X)

e Solution: V(x) = I[x*] = vx?

General result
x=-U(x)+Ve&(t) = V(x)=2U(x) J
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Example: Noisy Van der Pol oscillator*

[Exercise 3.6.17]

@ Equations of motion:

—x+v(a = x* = v?) +Veg(t)

4

X
v

» Coupled Langevin equations

» Bifurcation: Stable fixed point (o < 0) to stable limit cycle (a > 0)

t

e Stationary distribution: p(r,8) ~ e~ W(r)/e

37 /74

August 2011

Large deviations

Hugo Touchette (QMUL)

Noisy Van der Pol oscillator (cont'd)

A
2

W(r) = —ar®+

@ Solution:

38 /74

August 2011

Large deviations
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Long-time limit of additive observables

@ Stochastic process: x(t)

@ Observable: ;
Al =7 [ Fix(e) o
T Jo

Gartner-Ellis
e SCGF:

A(k) = _lim %In(eTkAT), <eT’<AT>:/D[X]p[x]em\r[xl

T—oo

@ Rate function: /(a) = mfx{ka — Ak)}

Donsker-Varadhan
@ Generator: L
o Tilted generator: Ly = L + kf
o SCGF: A\(k) = ((Lk)
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Example: Pulled Brownian particle

[Exercise 3.6.18]
@ Langevin dynamics:

m(t) = —ax —k[x(t) — vi|+ £() [ h
—~—— 2 0 1
drag  spring force noise vt
o Work: Oy
1 (7 g 1
WT:7/0 F(t)v de=AU+Qr ( r)

Large deviation principle
o SCGF:

1
k) = lim ?In<eTkWT>:ck(1+k), c=v?

T—o0

@ Rate function:

I(w) = ml?x{kw — MKk} = ———
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Summary
Path LDPs

plx] ~ e~ P/e p(AT[x] = a) ~ e~ 7102

LDPs for time-evolving or steady-state processes
Describes most probable state (or trajectory)
Describes fluctuations around most probable states
Most probable state = zero of | = min of /

Most probable state given by variational principle

Connection with classical mechanics

Euler-Lagrange equation
[x]=0 = Hamiltonian equation
Hamiltonian-Jacobi equation

Exercises
® 3.6.11 - 36.18 J
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Other applications

Equilibrium statistical mechanics
Multifractals

Chaotic systems (thermodynamic formalism)

Disorded systems
» Random walks in random environments
» Spin glasses
» Quenched/annealed large deviations

Nonequilibrium systems

Interacting particle models

» Zero-range process

» Exclusion process

» Current, density profile

» Fluctuation relations

» Space/time large deviations
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Equilibrium many-particle systems
N particles
Microstate: w = wi,wo, ..., wWN
Space of one particle: w; € A

Probability distribution on Ay: P(w)
Macrostate: My (w)

°
°
°
@ Space of N particles: Ay = AN
°
°
@ Probability distribution for My:

PMy=m)= Y  Pw)

Problems
e Find P(My = m)
@ Find most probable values of My (= equilibrium states)

@ Study fluctuations around most probable value

@ Consider thermodynamic limit N — oo
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Thermodynamic LDPs

Ensembles
Microcanonical Canonical

P,(My = m) ~ e~ Nlu(m) Ps(My = m) ~ e~ Na(m)

Generalize and refine Einstein's theory of fluctuations
Equilibrium and fluctuation properties given by rate function

°
°
@ Equilibrium states = min of /(m) = zero of I(m)
°

Equilibrium states given by variational principles

Entropy

P(Uy=u) = e, s(u) = mﬁin{ﬁu —(0)}

@ Legendre transform of thermo = Legendre transform of LDT
@ Legendre transform is valid only if s(u) is concave
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Problem

@ Sequence of RVs: w = X1, X5,..., X,
@ Observable (RV): S,(w)
@ Probability density:

_y_ P(She[s,s+As])  P(S, e Ay)
P(Sn = 5) = As B As
Goals
@ Sample S,
@ Estimate p(S, = s) I
As — 0

@ Test existence of LDP
© Estimate rate function /(s)

Continuous-time problem: Time discretization

{X(t)}imo — {Xiti1,  Xi = X(iAt)
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Direct estimators
e Configuration sample:

RO NRC N (>
{w™, W Wt

» L copies or realizations of w
> Prior pdf: p(w)

@ Observable sample:
{sW) s sy sU) = 5, (wb))

e Estimator of p(S, = s):

L Pag) 1 : ()
Pls) = x5 _LASJ;IAS(S )

» Empirical pdf
» Unbiased estimator [Exercise 4.7.3]
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Exercise: What is an empirical pdf?
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Direct estimators (cont’d)

@ Estimator of rate function:

i(s) = — In(s)

© Estimate p(s) for fixed L and n
@ Estimate /(s) for fixed L and n

© Repeat for increasing values of n

In(s)

Use large enough L to get good statistics J
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Problem with direct sampling

P(Sn — S) ~ e—nl(s)
Event S, = s (or S, € Ay) is exponentially rare

Choose L ~ e™(5) to see this event

L exponential with n

Solution: Importance sampling
@ Sample w with another pdf g(w)
@ Choose g(w) to make S, = s probable

@ Correct estimation of p(S, = s) according to g(w) chosen
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Example: Gaussian sample mean

[Exercise 4.7.2]

1

2 2
Sn —_ — X, p(X, = X) — e_(X_N’) /(20 )
n ; 7 V2102
@ Generate x1,xo,...,x, ~ Gaussian variates

@ Compute S,

© Repeat L times to obtain sample {s(1),s(2) . s(0)}
© Compute p(s) of sample

@ Compute /(s)

O Repeat for different n and L
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Gaussian sample mean (cont'd)

20f n=10
v\ n 10 — L=100 /,
N — L =1000 /
150 — L=10000 [, A
\ — L =100000 ,/
o 10¢ ]
c c
0.5
0.0

@ Increase L to sample tails

@ Increase L to smooth results (smaller error bars)
[Exercise 4.7.4] [Exercise 4.7.5]

@ Increase L for increasing n
@ Choose L ~ "
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Importance sampling

@ Original sampling pdf: p(w)
@ New sampling pdf: g(w)

New estimator

L
4(s) = Txz O 1. (S ) RE)
j=1

@ Importance sampling or likelihood ratio: R(w) = M

q(w)

@ q(s) is unbiased:

(@(s))g = (P(s))p = P(Sn = 5)

@ §(s) may have smaller variance than p(s)

Choose g such that varg(§) < vary(p) J
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Exercise: Derivation of new estimator
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Exponential change of measure

@ Original sampling pdf: p(w)
@ Exponentially tilted pdf:

@ Generating function:

Wo(k) = (e"5%)p = [ €54 p(w) d
@ Likelihood ratio:

P(Cb) —nkSp(w) —n[kSn(w)—A(k)]
R(w) = =e " W,(k) ~ e "
( ) Pk(w) ( )

pk(w) is efficient

/Zero-variance estimator as n — oo

How to choose k7?7
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Example: Gaussian sample mean
[Exercise 4.7.9]

m

1 < 1 2 (952
S,=- X;, p(w)= || p(X;), p(Xi=x)= o~ (x=n)*/(207)
a2 X e =Io0) p0=0 = s
@ Choose k € R
@ Generate variate xi, xo, . .., X, according to tilted pdf:
ekXIp(XI) e—(X,'—,LL—O'2k)2/(2O'2)
pr(xi) = =
W (k) V2102
Compute S,
Repeat L times to obtain sample {5(1), s@ ,s(L)}

o

o

e Compute §(s)
e Compute /(s)
o

Repeat for k € [Kmin, Kmax]
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Gaussian sample mean (cont'd)

[hL(S)
In,L(S)

o py is efficient to recover I(s) at s = N'(k)
@ Scan k € [Kmin, kmax] to obtain desired range s € [Smin, Smax]

@ Non-parametric: choose k such that s = X' (k) to obtain / at s
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Gaussian sample mean (cont'd)

o SCGF: .
A K) = pk + §o2k2

e Concentration point:

Nk)=p+ok=s = k(s)=_"

@ Explicit form of tilted pdf:
e~ (xi—s)?/(20?)

Pria)x) = V2ro?

Importance sampling interpretation

Sp = s large deviation under p(w)

l

Sn = s typical event under py(4)(w)

v

Hugo Touchette (QMUL) Large deviations August 2011

Metropolis (Monte Carlo) sampling

Problem
o Tilted pdf py involves W, (k)
o Tilted pdf px assumes knowledge of SCGF (k)
@ Knowledge of SCGF = /(s)

58 / 74

Solutions
© Use other types of estimators
@ Use Metropolis (Monte Carlo) sampling with py

Based on py(w)/pk(w’)
Free of W, (k) and A(k)

[Exercise 4.7.11]
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Exercise: lllustration of Metropolis sampling
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Application to SDEs
Path pdf form

@ Original path pdf: p[x]

o Tilted pdf:

lnted p [ ] eTkST[X] p[X] e_T/k[X] W (k) <eTk5T>
Pk|X] = ~ ) T —
Wr (k) g J

Transition probability form

@ Original transition matrix: M(At)

@ Tilted transition matrix:

kAtx!
e" 2™ M(AL)  prtc-rm)at
M (At) = SO

Generator form

@ Original generator: G

o Tilted generator: Gx = G + kx’ — A(k)
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Example: Gaussian additive process
e SDE: x(t) = &(t)

@ Pure Brownian motion without drift

@ Observable: ;
Drlx] = i/ (t) de = <)
T Jo

Intuitive observations
@ Typical state: D7 =0
@ Modified process with typical state Dt = d:

x(t) = d+£(t)

o Effective dynamics for large deviation

@ Explicit result:

? 1 [T, )
kol = 16— drl + 5 = 5= [ (c— e,

Hugo Touchette (QMUL) Large deviations August 2011

Exercise: Simulation of SDEs
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Summary

Direct sampling of S, with p(w) inefficient

Requires exponential sample size L

Change sampling distribution to g(w)

Make rare event under p more probable under g
Possible change of measure: Exponential measure
Exponential sampling efficient

Subexponential sample size

Structure of exponential measure = structure of LDT
Combine exponential sampling with Metropolis sampling
Other methods?
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Sample mean method

Sample A(k) instead of p(S, = s) J

e Sampling with p(w):

S, — N(0) in probability
e Sampling with py(w):

Sn — N (k) in probability

@ Estimator of S,:

5(k) =

~l =

L
> Sa(w!)
j=1

@ Estimator of A(k):

o Compute /(s) by Legendre transform
@ No need to estimate p
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Example: Gaussian sample mean

[Exercise 5.4.1]

1 o il 1 2 /(902
Sn - — )('7 p\w) = p X; , p X: = x) = e_(X_M) /(209)
D R | L
@ Choose k € R
e Generate variates x1, x2, ..., x; according to tilted pdf:
ekxlp(Xl) e_(XI'_/J’_O-Zk)2/(2O-2)
pr(xi) = -
W (k) V2mo?
@ Compute s for L large
@ Repeat for different k
o Integrate results to obtain A(k)
o Obtain | by Legendre transform
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Gaussian sample mean (cont'd)

—L=5 ]
—L=50
— L=100 ] 20r

15¢

Y
AL(S)

=~
~

— L=5
— L=50
— L =100

IL(9)

@ No empirical pdf calculated
@ Non-convex artefacts for small L (A(k) not convex)
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Empirical generating function

o 1ID sample mean: (k) = E[e*X]
@ Estimator for A(k):

@ Alternative estimator:

@ Markov chain:

£<1+"’+X13+3<b—|—1+"'+X2Iz+"'+3<n—b+1+"'+Xn

Yl Y2 Ym

@ Markov estimator:

O*Il—'

1 (J) n
kY
_E m—= —
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Example: Gaussian sample mean

[Exercise 5.4.2]

1 1
= - ZX,‘, p(w) = Hp(X,-), p(Xi = x) = o~ (x—1)?/(20?)
iz i— 2o
=1 i=1
Choose k € R
Generate variates xi, x, . .., x, according to original pdf p(x;)

Repeat for different k

°

°

o Compute \(k) for L large

°

e Obtain | by Legendre transform
°

Repeat for larger L
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Gaussian sample mean (cont'd)

— L=10
20 — L=100
— L =1000
— L =10000

7
A
_4 L ,/’/
Pad .
6 -6 -4 -2 0 2 4 6

=~
=~

L = 10000

IL.(9)

e Efficient for RVs with bounded support [Exercise 5.4.2]
@ Less efficient for unbounded RVs
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Application for SDEs*
[Exercise 5.4.3]
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Other methods

@ Optimal path methods
oD

p(x, T|x) = e~V Tho)/e
V(x, T|x0) = min JIx
( [x0) x(t):x(0)=x0,x(T)=x d ‘

> [Exercise 5.4.4 — 5.4.6]

@ Transition path method

» Monte Carlo for paths
» See Christoph Dellago

@ Splitting / cloning methods
» See notes for references

e Eigenvalue method

A(k) = dominant eigenvalue of tilted generator Gy

» See notes for references
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