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Distribution

P(Sn = s) ≈ e−nI (s)

I (s) = s log s + (1− s) log(1− s) + log 2

Séquences typiques

#{~X : Sn = 0.5} ≈ 2n
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Images aléatoires: la télé de Bernoulli

• Pixel aléatoire (p = 0.5)

• n × n pixels

• 2n×n configurations
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Boltzmann (1877)
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Particules i

• Distribution d’énergie:

wj = # particules au niveau j

• Distribution multinomiale:

ln
N!∏
j wj !

≈ −N
∑
j

wj lnwj = Ns(w)

• P(w) ≈ eNs(w)
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Einstein (1910)

• Généralise Boltzmann

• Macro-état: MN

• Densité d’états (complexion):

W (m) = # micro-états avec MN = m

Postulat d’Einstein

W (m) = eNs(m)

• Probabilité:

P(m) = eN[s(m)−s(m∗)]

• Équilibre: s(m∗) max
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Cramér (1938)

• Somme aléatoire:

Sn =
1

n

n∑
i=1

Xi , Xi ∼ p(x) IID

• Fonction cumulant:

λ(k) = lnE [ekX ] =

∫
R
p(x) ekx dx

• Densité de probabilité:

P(Sn = s) = e−nI (s) 1√
n

(
b0 +

b1

n
+ · · ·

)
• Fonction de décroissance:

I (s) = max
k∈R
{ks − λ(k)}

Harald Cramér (1893-1985)
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Sanov (1957)

• Séquence de variables aléatoires:

X1,X2, . . . ,Xn Xi ∼ p(x)

• Distribution empirique:

Ln(x) =
1

n

n∑
i=1

δXi ,x

P(Ln = ρ) ≈ e−nD(ρ||p)

• Entropie relative:

D(ρ||p) =

∫
dx ρ(x) ln

ρ(x)

p(x)

• Loi des grands nombres: Ln → ρ

                
      

(1919-1968) 

Ivan Nikolaevich Sanov (1919-1968)
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Théorie des grandes déviations

• Variable aléatoire: An

• Distribution: P(An = a)

Principe de grandes déviations (PGD)

P(An = a) ≈ e−nI (a)

• Signification de ≈:
lnP(a) = −nI (a) + o(n)

lim
n→∞

−1

n
lnP(a) = I (a)

• Fonction taux: I (a) ≥ 0

Buts de la théorie

1 Prouver qu’un PGD existe

2 Calculer la fonction taux
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Théorème de Gärtner-Ellis

Fonction cumulant limite

λ(k) = lim
n→∞

1

n
lnE [enkAn ], k ∈ R

Théorème: Gärtner (1977), Ellis (1984)

Si λ(k) is dérivable, alors

1 PGD:
P(An = a) ≈ e−nI (a)

2 Fonction taux:

I (a) = max
k
{ka− λ(k)}

• I (a) = transformée de Legendre de λ(k)

Richard S. Ellis

J. Gärtner
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Cramer’s Theorem

• Somme:
Sn =

1

n

n∑
i=1

Xi , Xi ∼ p(x), IID

• Fonction cumulant:

λ(k) = lim
n→∞

1

n
lnE [enkSn ] = lnE [ekX ]

Cas Gaussien

λ(k) = µk + σ2

2 k2, k ∈ R
I (s) = 1

2σ2 (s − µ)2, s ∈ R

p(S =s)

I(s)

n

s

n=10

n=100

n=500

µ

Cas exponentiel

λ(k) = − ln(1− µk), k < 1
µ

I (s) = s
µ − 1− ln s

µ , s > 0

I(s)

s

n=10

n=100

n=500

µ

p(S =s)n
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Théorème de Sanov

• n variables aléatoires:

ω = ω1, ω2, . . . , ωn, P(ωi = j) = pj

• Fréquences empiriques:

Ln,j =
1

n

n∑
i=1

δωi ,j =
# (ωi = j)

n
, Ln = (Ln,1, Ln,2, . . .)

Gärtner-Ellis
• Fonction cumulant:

λ(k) = lim
n→∞

1

n
lnE [enk·Ln ] = ln

∑
j

pj e
kj

• Fonction taux:

D(µ) = inf
k
{k · µ− λ(k)} =

∑
j

µj ln
µj
pj
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Au delà de l’indépendance: Processus de Markov

• Processus: {Xt}Tt=0

• Observable: AT = 1
T

∫ T
0 f (Xt) dt

PGD

P(AT = a) ≈ e−TI (a), T →∞

• Limite ergodique

• Donsker & Varadhan (’70)

t

xHtL

a

PHA T=
aL

Applications

• Marches aléatoires

• Systèmes dynamiques bruités

• EDP stochastiques

• Particules en interaction

• Graphes aléatoires

• Files d’attente

• Statistiques, estimation

• Théorie de l’information
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Résumé

P(An = a) ≈ e−nI (a)

I(a)

a a

I(a)

p (a)n p (a)n Λn

Typique

Atypique

• Valeur typique: Loi des grands nombres

• Forme quadratique locale: Théorème limite centrale

• Forme non-quadratique en général: Grandes déviations

Théorie générale des états typiques et fluctuations
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Systèmes à l’équilibre

• N particules

• Micro-état: ~X = X1,X2, . . . ,XN

• Ensemble: P(~X )

• Macro-état: MN(~X )

• Distribution:

P(MN = m) =
∑

~X :MN(~X )=m

P(~X )

MN Macro
~X Micro

X1

X2

MN

Problèmes
• P(MN = m)

• Valeurs typiques de MN (= états d’équilibre)

• Fluctuations autour de l’équilibre

• Limite thermodynamique N →∞
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Grandes déviations à l’équilibre

Microcanonique

Einstein (1910)
u

Pu(MN = m) = eS(u,m)/kB

• Extensivité: S ∼ N

• PGD:

Pu(MN = m) ≈ e−NIu(m)

Canonique

Landau (1937)

T

Pβ(MN = m) = e−F (β,m)

• Extensivité: F ∼ N

• PGD:

Pβ(MN = m) ≈ e−NIβ(m)

• Concentration exponentielle

• États à l’équilibre = minima et zéros de I
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Distribution de Maxwell

• Énergie:

UN =
N∑
i=1

v2
i

2m
, N ∼ 1023

• Distribution des vitesses:

LN(v) =
# particles vi ∈ [v , v + ∆v ]

N∆v

LDP

P(LN = ρ) ≈ e−NI (ρ)

• Distribution d’équilibre:

ρ∗(v) = c v2e
− mv2

2kBT

• Distribution de Maxwell

v

ρ
(v

)

∼ N1/2

∼ N1/4
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Systèmes hors équilibre

• Processus: Xt

• Une ou plusieurs particules
• Modèle: Processus de Markov
• Forces externes
• Réservoirs

• Trajectoire: {xt}Tt=0

• Distribution: P[x ]

• Observable: AN,T [x ]

x (t)

t

AT

In section 5, we take the limit of infinitely high or low currents, and calculate the
corresponding limits for the large deviation function through direct diagonalization of the
conditioned process. In the low current limit, we obtain a perturbative expansion around a
diagonal matrix. In the high current limit, we obtain a system equivalent to an open XX spin
chain, diagonalizable through free fermion techniques.

In section 6, we use the MFT to obtain the full dynamical phase diagram of the current
for the open ASEP. We compare these results with those obtained from the exact calculations
of the previous sections. We also remark that the method used in that section is in principle
applicable to any one-dimensional bulk-driven particle gas.

The present review is largely based on the authorʼs PhD manuscript [115]. It is intended
to give a self-contained and reasonably detailed account of the tools involved in determining
the large deviations of the current in the ASEP, as much as of the results that they yield. For
the sake of brevity and legibility, some of the finer details of those calculations, as well as
most technical aspects of everything related to the integrability of the model, have been
omitted, but should the readers be in need of clarifications, they may refer to [115] or to the
references given in section 3.1. That section contains most of the bibliographical references of
this review, and although it is far from being exhaustive, it should provide an adequate
starting point for the curious reader.

2. A crash course in large deviations

This first section contains a brief introduction to the mathematical objects that we will be
manipulating in the rest of the review, namely: large deviation functions. We first define the
concept of large deviations in general, and give a few useful theorems. We then apply the
concept to time-additive observables for Markov processes in continuous time, and look at
two specific examples with interesting properties: the time-integrated empirical vector, and
the entropy production. For a thorough review of this topic, one may refer to [168] and [169].

2.1. Definition and a few useful results

Consider a system defined by a size N, and an observable a intensive in N, which has a
probability distribution P aN ( ) for each N. It is said that a obeys a large deviations principle
with rate g a( ) if the limit

Figure 1. Sketch of a one-dimensional non-equilibrium system. Particles move in a
one-dimensional channel, between two reservoirs at fixed densities ar and br . The
particles interact with each-other, and are subject to a driving field V. Because of the
field, and the possible imbalance between the reservoirs, there is a net flux of particles
from one side of the system to the other.

J. Phys. A: Math. Theor. 48 (2015) 503001 Topical Review

4

Problèmes
• P(AN,T = a)

• Valeurs typiques de AN,T (= états stationnaires)

• Fluctuations autour des valeurs typiques

• Limites:
N →∞ T →∞ bruit→ 0
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Applications

Computer simulation in statistical mechanics 21
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Figure 5. Modern micromanipulation equipment permits to exert well defined forces on
single molecules and probe the free energetics of selected degrees of freedom. On the left-
hand side a decaalanine molecule is stretched by a laser trap translated at constant speed
(graphics by Harald Oberhofer, University of Vienna). The free energy F (q) shown on
the right-hand side as a function of the end-to-end distance q was obtained by analyzing
the work performed on the system during the non-equilibrium stretching process [79, 85].

icz proved that equilibrium states are ”passive”, which means that no mechanical
work may be gained from an isolated system in such a state by applying an external
adiabatic perturbation [86, 87]. The notion of passivity is a particular formulation
of the Second Law and is equivalent to the statement that the system cannot be
used as a perpetuum mobile of the second kind. But what are the ”active” states
which may give rise to fluctuations violating the Second Law, and how are they
distributed in phase space? If the concept of passivity is applied to trajectories of
pure states, i.e. points in phase space, it has been shown for an ensemble of non-
interacting harmonic oscillators that the active states have measure zero and are
distributed on a Cantor-like fractal set in phase space [88]. Most likely, a similar
picture prevails also for more realistic systems, although we do not know of any
proof. For the first time, we encounter fractal objects in phase space in connection
with the Second Law.

Closer to laboratory experiments are systems in stationary nonequilibrium
states. Computer simulations turn out to be essential for the study of transport
properties in this case. Nonequilibrium states are generated by the application
of an external perturbation, which may be either mechanical (external fields) or
thermal (velocity or temperature gradients). Since the perturbation does work
on the system which is eventually dissipated into heat, a thermostating mecha-
nism is required to achieve a stationary state. A prototypical example is a gas
sandwiched between two huge blocks of copper at different temperatures acting
as thermostats such that a stationary heat flow develops from the warm to the
cold block. However, for computer modeling, the ”huge blocks” pose a serious
obstacle, since they add (too) many thermostated degrees of freedom to the prob-
lem. An ingenious dynamical scheme may be used to avoid the introduction of so
many additional variables. It consists in replacing a ”block” by a small number

The 2D Navier–Stokes Eqs
2D Euler and Quasi-Geostrophic Langevin dynamics.

Stochastic averaging for geostrophic jets.

Path integrals and large deviations.
Instantons for Langevin QG dynamics (F.B., J.L., and O.Z.).
Non-equilibrium instantons (F.B. and J.L.)

Instantons: Maximum Likelihood Paths

Most trajectories that lead to a rare event follow the easiest
path.
Large deviation theory: instantons as minimum action paths.

2D Navier-Stokes equations
(time: 10 000) (PRL)
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order 1) (J. Stat. Phys.)

Goal: predict attractors, transition pathways and probabilities.
Instanton computations will predict them when it is not
possible to do that using direct numerical simulations.

F. Bouchet CNRS–ENSL Phase transitions in geophysical fluid dynamics.
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In section 5, we take the limit of infinitely high or low currents, and calculate the
corresponding limits for the large deviation function through direct diagonalization of the
conditioned process. In the low current limit, we obtain a perturbative expansion around a
diagonal matrix. In the high current limit, we obtain a system equivalent to an open XX spin
chain, diagonalizable through free fermion techniques.

In section 6, we use the MFT to obtain the full dynamical phase diagram of the current
for the open ASEP. We compare these results with those obtained from the exact calculations
of the previous sections. We also remark that the method used in that section is in principle
applicable to any one-dimensional bulk-driven particle gas.

The present review is largely based on the authorʼs PhD manuscript [115]. It is intended
to give a self-contained and reasonably detailed account of the tools involved in determining
the large deviations of the current in the ASEP, as much as of the results that they yield. For
the sake of brevity and legibility, some of the finer details of those calculations, as well as
most technical aspects of everything related to the integrability of the model, have been
omitted, but should the readers be in need of clarifications, they may refer to [115] or to the
references given in section 3.1. That section contains most of the bibliographical references of
this review, and although it is far from being exhaustive, it should provide an adequate
starting point for the curious reader.

2. A crash course in large deviations

This first section contains a brief introduction to the mathematical objects that we will be
manipulating in the rest of the review, namely: large deviation functions. We first define the
concept of large deviations in general, and give a few useful theorems. We then apply the
concept to time-additive observables for Markov processes in continuous time, and look at
two specific examples with interesting properties: the time-integrated empirical vector, and
the entropy production. For a thorough review of this topic, one may refer to [168] and [169].

2.1. Definition and a few useful results

Consider a system defined by a size N, and an observable a intensive in N, which has a
probability distribution P aN ( ) for each N. It is said that a obeys a large deviations principle
with rate g a( ) if the limit

Figure 1. Sketch of a one-dimensional non-equilibrium system. Particles move in a
one-dimensional channel, between two reservoirs at fixed densities ar and br . The
particles interact with each-other, and are subject to a driving field V. Because of the
field, and the possible imbalance between the reservoirs, there is a net flux of particles
from one side of the system to the other.
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atmosphere during extreme heat wave events. Fig. 5A shows
the temperature and the 500-hPa geopotential height anomalies,
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Fig. 5. (A) Northern Hemisphere surface temperature anomaly (colors)
and 500-hPa geopotential height anomaly (contours), conditional on the
occurrence of heat wave conditions 1

T

R T
0 A(xn(t))dt > a, with T = 90 d

and a = 2 K, estimated from the large deviation algorithm. (B) North-
ern Hemisphere anomaly of the averaged kinetic energy for the zonal
velocity at 500 hPa conditional on the occurrence of heat wave condi-
tions E

h
KE500 | 1

T

R T
0 A(xn(t))dt > a

i
, with T = 90 d and a = 2 K, estimated

from the large deviation algorithm, with respect to the long-time average
E [KE500] computed from the control run.

conditioned on the occurrence of a 90-d 2 K heat wave (com-
posite statistics). Those conditional statistics are reminiscent of
the teleconnection pattern maps sometimes shown in the climate
community. However, while usual teleconnection patterns are
computed from empirical orthogonal function (EOF) analysis,
and thus describe typical fluctuations, our extreme event condi-
tional statistics describe very rare flows that characterize extreme
heat waves. Those global maps are a unique way to consider rare
event and atmosphere fluctuation statistics, which is extremely
interesting from a dynamical point of view.

By definition, as we plot statistics conditioned on a =
1
T

R T

0
A(xn(t))dt > 2K, with T = 90 d, Fig. 5A shows a warming

pattern over Europe. The geopotential height map also shows
a strong anticyclonic anomaly right above the area experiencing
the maximum warming, as expected through the known positive
correlation between surface temperature and anticyclonic condi-
tions (34). A less expected and striking result is that the strong
warming over Europe is correlated with a warming over south-
eastern Asia and a warming over North America, both with sub-
stantial surface temperature anomalies of order of 1 K to 3 K,
and anticorrelated with strong cooling over Russia and Green-
land, of the order of -1 K to -2 K. This teleconnection pattern is
due to a strongly nonlinear stationary pattern for the jet stream,
with a wavenumber 3 dominating the pattern, as is clearly seen
from the geopotential height anomaly. In Fig. 5B, the anomaly
of the kinetic energy gives a complementary view: Over Europe,
the succession of a southern blue band (negative anomaly) and
a northern red band (positive anomaly) should be interpreted as
a northward shift of the jet stream there. Strikingly, over Green-
land and North America, the jet stream is at the same position
(but it is more intense) for the large deviation algorithm statis-
tics as for the control run, while it is shifted northward over
Europe and very slightly southward over Asia. This is related
to the strong southwest–northeast tilt of the geopotential height
anomalies over the Northern Atlantic. The extended red area
(positive anomaly of kinetic energy) over Asia is rather due to
a more intense cyclonic activity there, than to a change of jet
stream position.

Inspection of the time series of the daily temperature shows
that along the long duration of heat waves, the synoptic fluctua-
tions on timescales of weeks are still present (Fig. 2B). The tem-
perature is thus fluctuating with fluctuations of order of 5–10 �C,
as usual, but they fluctuate around a larger temperature value
than usual. This is also consistent with the northward shift of the
jet stream over Europe, but does not seem to be consistent with
a blocking phenomenology as hypothesized in many other pub-
lications. This calls for using similar large deviation algorithms
with other models and other setups to test the robustness of the
present observation.

Conclusions

We have demonstrated that rare event algorithms, developed
using statistical physics ideas, can improve the computation of
the return times and the dynamical aspects of extreme heat
waves. One of the future challenges in the use of rare event algo-
rithms for studying climate extremes will be to identify which
algorithms and which score functions will be suitable for each
type of rare event. We anticipate that this tool will make avail-
able a range of studies that have been out of reach to date.
First, it will pave the way to the use of state of the art climate
models to study rare extreme events, without having to run the
model for unaffordable times. The demonstrated gain of sev-
eral orders of magnitude in the sampling efficiency will also help
to make quantitative model comparisons, to assess on a more
quantitative basis the skill to predict extreme events, for the
existing models. It will also make available a range of dynami-
cal studies. As an example, having a high number of heat waves

28 | www.pnas.org/cgi/doi/10.1073/pnas.1712645115 Ragone et al.
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Exemple: Particule brownienne

• Bille de verre dans l’eau

• Pinces laser

• Dynamique de Langevin:

mẍ(t) = −αẋ︸︷︷︸
friction

−k[x(t)− vt]︸ ︷︷ ︸
force

+ ξ(t)︸︷︷︸
bruit

• Travail fluctuant:

WT︸︷︷︸
travail

= ∆U︸︷︷︸
potentiel

+ QT︸︷︷︸
chaleur T

vt
Q

U

PGD

P(WT = w) ≈ e−TI (w)

Symétrie

P(WT = w)

P(WT = −w)
= eTcw
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Sommaire

• Variables aléatoires — ensembles — processus stochastique

• Valeurs typiques — état d’équilibre — état stationnaire

• Limites: N →∞, T →∞, ε→ 0

• Fonction taux = entropie

• Fonction cumulant = énergie libre

• Base mathématique de la physique statistique

H. Touchette
The large deviation approach to statistical mechanics
Physics Reports 478, 1-69, 2009

http://appliedmaths.sun.ac.za/~htouchette/
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Recherche: Comment les fluctuations sont-elles créées?

t

xHtL

a

PHA T=
aL

• Trajectoires associées à une fluctuation AT = a

• Dynamique de ces trajectoires

• Processus de Markov générant ces trajectoires

Xt |AT = a︸ ︷︷ ︸
processus conditionné

≡ X̂t︸︷︷︸
process effectif
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Entropy and free energy

• Density of states:

Ω(u) = # ω with U/N = u

• Large deviation form: Ω(u) ≈ eNs(u)

u

Gärtner-Ellis Theorem

s(u) = min
β
{βu − ϕ(β)}

• Free energy:

ϕ(β) = lim
N→∞

− 1

N
lnZ (β), Z (β) =

∫
dω e−βU(ω)

• Z (β) = partition function = generating function

• ϕ(β) = free energy = SCGF

• Basis of Legendre transform in thermodynamics
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