Topological pressure, free energy, equilibrium states and all that

Hugo Touchette

School of Mathematical Sciences, Queen Mary, University of London

November 7, 2006

Hugo Touchette (QMUL)

Thermodynamic formalism

November 7, 2006

1 / 20

Outline

- Thermodynamics
- Statistical mechanics
- Opposition of the state of t

What is thermodynamics?

- Science of heat
 - how heat is transformed, stored, converted
 - how heat flows
 - science of heat engines (and fridges)
 - based on thermodynamics laws
- The actors:
 - ▶ Joule (1843) (units of energy)
 - ► Carnot (1824)
 - ► Kelvin (1850) (units of temperature)
 - Clausius (1850) (entropy = transformation energy)
- Was invented before atoms were discovered!
 - ► Heat = energy = caloric flow
 - ► Clear now that heat = kinetic energy

Hugo Touchette (QMUL)

Thermodynamic formalisn

November 7, 2006

3 / 20

Thermodynamic potentials

- Energy: *E*
- Heat: Q
- Work: W
- Entropy: *S*
- Temperature: *T*

First law

$$\Delta E = \Delta Q + \Delta W$$

Second law

$$\Delta Q = T \Delta S$$

Free energy

$$F = E - TS$$

• Part of E which is free to be extracted when T = constant

$$\Delta F = -\Delta W$$

• Thermodynamic derivatives:

$$\left. \frac{\partial F}{\partial T} \right|_{V} = -S, \qquad \left. \frac{\partial F}{\partial V} \right|_{T} = -p$$

Gibbs's variational principle

The equilibrium state of a system has minimum free energy

Hugo Touchette (QMUL)

Thermodynamic formalism

November 7, 2006

5 / 20

Statistical mechanics (thermostatistics)

Derive the macroscopic from the microscopic

- Boltzmann (1872)
- Gibbs (1902)
- Maxwell, Planck, Einstein,...

- State of one particle: x_i
- Energy of one particle: $u(x_i)$
- Microstate: $\omega = (x_1, x_2, \dots, x_n)$
- Total energy:

$$U_N(\omega) = \sum_{i=1}^N u(x_i)$$

• $N \approx 10^{23}$ (Avogadro's number)

Introducing probabilities

Surrounding (Heat bath)

Canonical ensemble (Gibbs):

$$P(\omega) = \frac{e^{-\beta U_N(\omega)}}{Z_N(\beta)}$$

- Inverse temperature: $\beta = (k_B T)^{-1}$
- ▶ Partition function (*Zustandssumme*):

$$Z_N(\beta) = \sum_{\omega} e^{-\beta U_N(\omega)}$$

Hugo Touchette (QMUL)

Thermodynamic formalism

November 7, 2006

7 / 20

Equilibrium energy

• Equilibrium property:

$$u_N = \frac{U_N}{N} \stackrel{N \to \infty}{\longrightarrow} constant$$
 (i.p.)

• Probability for the mean energy:

$$P(u) = \sum_{\omega: U_N(\omega) = uN} P(\omega)$$

Equilibrium energy:

$$u_{\beta} = global \ max \ of \ P(u)$$

Calculation of the equilibrium energy

• Entropy: s(u)

microstates with $U_N = uN \approx e^{Ns(u)}$

• Free energy:

$$\varphi(\beta) = -\lim_{N \to \infty} \frac{1}{N} \ln Z_N(\beta)$$

Variational principle

- u_{β} is the global min of $G_{\beta}(u) = \beta u s(u)$
- $\varphi(\beta) = \inf_{u} \{\beta u s(u)\}$

(Legendre transform)

• $\varphi'(\beta) = u_{\beta}$

Why free energy?

$$\varphi = \frac{u}{k_B T} - s, \qquad F = E - TS$$

Hugo Touchette (QMUL)

Thermodynamic formalism

November 7, 2006

9 / 20

Distribution of state

Distribution of state:

$$\rho_N(x) = \frac{1}{N} \sum_{i=1}^N \delta(x_i - x) = \frac{\# \text{ particles with state } x}{N}$$

- Natural measure (dyn sys)
- Empirical vector (large deviations)
- Energy:

$$\frac{U_N}{N} = \int \rho_N(x) \ u(x) \ dx = u(\rho_N)$$

• Equilibrium state:

$$\rho_{\beta} = \text{global max of } P(\rho_{N})$$

Calculation of the equilibrium states

Variational principle

 ho_{eta} is the global min of

$$G_{eta}(
ho) = eta u(
ho) - s(
ho)$$
 and $\varphi(eta) = eta u(
ho_{eta}) - s(
ho_{eta})$

• Statistical (Boltzmann-Gibbs-Shannon) entropy:

$$s(\rho) = -\int \rho(x) \ln \rho(x) dx$$

Gibbs state:

$$ho_{eta}(x) = rac{e^{-eta u(x)}}{Z(eta)}, \qquad Z(eta) = \int e^{-eta u(x)} \ dx$$

Hugo Touchette (QMUL)

Thermodynamic formalism

November 7, 2006

11 / 20

General approach

Consider a system of N particles

- Hamiltonian: $U_N(\omega)$
- Microstate: ω
- Macrostate: m
- Probability: $P_{\beta}(m)$
- Equilibrium state:

$$m_{eta} = global \; max \; of \; P_{eta}(m)$$

Meaning of equilibrium:

$$m \stackrel{N \to \infty}{\longrightarrow} m_{\beta}$$
 (i.p.)

ullet There is a variational principle behind m_eta

Chaotic maps

- Map: $x_{n+1} = f(x_n)$ (smooth, expansive... nice enough)
- Trajectory: $\omega = (x_0, x_1, \dots, x_{N-1})$
- Invariant measure: $\mu(x)$
- "Energy" function:

$$E_N(\omega) = E_N(x_0) = \frac{1}{N} \sum_{i=0}^{N-1} \phi(x_i)$$

Expansion coefficient:

$$E_N(x_0) = \frac{1}{N} \sum_{i=0}^{N-1} \ln |f'(x_i)|$$

Natural measure:

$$\rho_N(x_0) = \frac{1}{N} \sum_{i=0}^{N-1} \delta(x_i - x)$$

Hugo Touchette (QMUL)

Thermodynamic formalism

November 7, 2006

13 / 20

Equilibrium (thermodynamic) properties

Lyapunov exponent:

$$E_N(x_0) = rac{1}{N} \sum_{i=0}^{N-1} \ln |f'(x_i)| \stackrel{N o \infty}{\longrightarrow} \lambda \qquad \mu - a.e.$$

Sinai-Ruelle-Bowen (SRB) measure:

$$\rho_N(x_0) = \frac{1}{N} \sum_{i=0}^{N-1} \delta(x_i - x) \xrightarrow{N \to \infty} \mu_{SRB} \qquad \mu - a.e.$$

Thermodynamic analogy (Ruelle, Sinai)

- ullet Chaotic trajectories = random states of an N-particle system
- Concentration points = equilibrium states
- Variational principles behind equilibrium states

Thermodynamic formalism (naive)

• Energy function:

$$U_N(x_0) = \frac{1}{N} \sum_{i=0}^{N-1} \ln |f'(x_i)|$$

• Topological partition function:

$$Z_N(\beta) = \int dx_0 \ e^{-\beta N U_N(x_0)}$$

Why topological?

$$Z_N(\beta) = \int dx_0 \ e^{-\beta N U_N(x_0)}, \qquad Z_N(\beta) = \int d\mu(x_0) \ e^{-\beta N U_N(x_0)}$$

Hugo Touchette (QMUL)

Thermodynamic formalism

November 7, 2006

15 / 20

Counting and classifying trajectories

Partition function:

$$Z_N(\beta) = \int du \ \Omega_N(u) e^{-\beta Nu}$$

Density of trajectories:

$$\Omega_N(u) = \#$$
 trajectories with $U_N = u$

Entropy:

$$\Omega_N(u) \approx e^{Ns(u)}$$

Topological pressure (free energy);

$$\varphi(\beta) = -\lim_{N \to \infty} \frac{1}{N} \ln Z_N(\beta)$$

Why pressure?

$$\left. \frac{\partial F}{\partial V} \right|_{T} = -p$$
 (pressure)

Connection between $\varphi(\beta)$ and s(u)

Variational principle:

$$\varphi(\beta) = \inf_{u} \{\beta u - s(u)\}$$

Inversion (under some conditions):

$$s(u) = \inf_{\beta} \{\beta u - \varphi(\beta)\}$$

Lyapunov exponent:

$$arphi(1)=0, \qquad s(\lambda)=\lambda, \qquad \Omega_N(\lambda)pprox e^{N\lambda}, \qquad P(\omega)pprox e^{-N\lambda}$$

• These are the ideas – proving the results is another story!

Hugo Touchette (QMUL)

Thermodynamic formalism

November 7, 2006

17 / 20

Symbolic dynamics

- Map: $f: X \to X$ (expansive)
- Partition (coarse-graining): α
- Pre-images: $f^{-N}\alpha$
- Entropy:

$$H_N(\alpha,\mu) = -\sum_{A \in f^{-N}\alpha} \mu(A) \ln \mu(A)$$

• Mean entropy:

$$h(\alpha, \mu) = \lim_{N \to \infty} \frac{H_N(\alpha, \mu)}{N}$$

Kolmogorov-Sinai entropy:

$$h(\mu) = \sup_{\alpha} h(\alpha, \mu)$$

Main results

• Variational principle for the pressure:

$$\varphi(\beta) = \inf_{\mu} \{\beta u(\mu) - h(\mu)\}, \qquad u(\mu) = \ln |f'(x)|$$

Gibbs states:

$$\mu_{\beta}(x) = \frac{e^{-\beta u(x)}}{Z(\beta)}, \qquad Z(\beta) = \int dx \ e^{-\beta u(x)}$$

Variational principle for SRB states:

$$\mu_{SRB} = \mu_{\beta=1}$$

Kolmogorov-Sinai entropy:

$$\varphi(1) = 0 \Leftrightarrow h = \lambda$$

Hugo Touchette (QMUL)

November 7, 2006

19 / 20

References

F. Reif

Fundamentals of Statistical and Thermal Physics McGraw-Hill, 1965.

C. Beck and F. Schlögl

Thermodynamics of Chaotic Systems: An Introduction Cambridge University Press, 1993.

- D. Ruelle Thermodynamic Formalism Cambride University Press, 1978.
- A. Katok and B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems Cambridge University Press, 1995.

http://www.maths.qmul.ac.uk/~ht ht@maths.qmul.ac.uk