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From short- to long-range systems

ε

Short-range interaction

Finite correlation length

Extensive energy: U ∼ N

Sub-system separation

Entropy always concave

ε

Long-range interaction

Infinite correlation length

Non-extensive energy

No separation

Entropy possibly nonconcave
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Breakdown of the Legendre duality

Concave entropy:

ϕ = s∗

s = ϕ∗
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slope= β

slope= u
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Nonconcave entropy:
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I s∗∗(u) = concave envelope of s(u)
I s∗∗(u) ≥ s(u)

Hugo Touchette (QMUL) Nonconcave entropies February 2009 4 / 15



Physical consequences

Phase transitions
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Nonequivalent ensembles

How do we compute nonconcave entropies?
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Large deviation formulation
Random variable: An

Probability distribution: P(An = a)

Large deviation principle

P(An = a) ∼ e−nI (a)

Rate function: I (a)

Generating function:
Wn(k) = 〈enkAn〉

Free energy:

λ(k) = lim
n→∞

1

n
ln Wn(k)

Convex rate function

I = λ∗

Nonconvex rate function

I 6= λ∗

I λ
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Entropies vs rate functions

Equilibrium entropy

Microstate: ω = (ω1, ω2, . . . , ωN)

Energy: U(ω)

Density of states: ΩN(u)

Entropy: ΩN(u) ∼ eNs(u)

Nonequilibrium fluctuations

Trajectory: x(t)

Process: P[x ]

Observable: At [x ]

Probability distribution: P(At = a)

LDP: P(At = a) ∼ e−tI (a) 0 τ

x(t)

Problem

How to calculate nonconcave s or nonconvex I?
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Method 1: Contraction

Contraction: An = f (Bn)

LDP for Bn: P(Bn = b) ∼ e−nIB(b)

Contraction principle

LDP for An:
IA(a) = inf

b:f (b)=a
IB(b)

Basis of MaxEnt principle / saddle-point approx

Useful when IB(b) is convex

Equilibrium applications:
I BEG model (Barré et al PRL 2001; Ellis, Touchette & Turkington 2004)
I HMF, 1/rα model (Barré et al JSP 2005)
I Potts model (Costeniuc, Ellis & Touchette JMP 2005)
I φ4 model (Campa, Ruffo & Touchette 2008)
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Method 2: Critical points of generating function

Generating function:

Wn(k) = 〈enkAn〉 =

∫
enLk (φ) dφ

Free energy:
λ(k) = sup

φ
Lk(φ)

Critical point analysis

Critical points of Lk(φ)→ I (a)

Global max of Lk(φ)→ convex parts of I (a)

Local max and saddles of Lk(φ)→ nonconvex parts of I (a)

Applications:
I Spin models: BEG, Spherical, Potts
I 2D vortex model (Ellis, Haven & Turkington JSP 2000, 2002)
I Dyn phase transition in glasses (Garrahan et al PRL 2007, JPA 2009)
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Method 3: Generalized canonical ensemble
(Costeniuc, Ellis, Touchette & Turkington JSP 2005, PRE 2006)

Generalized generating function:

Wn,g (k) = 〈enkAn+ng(An)〉
Generalized free energy:

λg (k) = lim
n→∞

1

n
ln Wn,g (k)

Generalized Gärtner-Ellis Theorem

If λg (k) is differentiable, then I = λg
∗ + g

I nonconvex ⇒ λ = λ0 non-differentiable

Find g s.t. λg is differentiable

Applications:
I First-order phase transitions (Challa & Hetherington PRL 1988)
I Potts model (Costeniuc, Ellis & Touchette PRE 2006)
I Multifractals (Touchette & Beck JSP 2006)
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Applications

Markov processes:

I Finite, ergodic ⇒ convex I
I Sinks/absorbing states ⇒ affine I
I Nonconvex I

F Infinite state space
F Non-ergodic (Dinwoodie Ann Prob 1992, 1993)
F Long-range correlation (?)

Chaotic systems (Touchette & Beck JSP 2006)

Ergodicity breaking (Mukamel et al PRL 2005, Bouchet et al PRE 2008)

in the !K;E" plane, the magnetization m cannot assume any
value in the interval !#1; 1". There exist gaps in this
interval to which no microscopic configuration could be
associated. To see this, we take for simplicity the case
N$ >N#. It is evident that the local energy U satisfies 0 %
U % 2N#. The upper bound is achieved in microscopic
configurations where all down spins are isolated. This
implies that 0 % u % 1#m. Combining this with (4)
one finds that for positive m the accessible states have to
satisfy

m %
!!!!!!!!!!
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p
; m & m$; m % m#

with m' ( #K '
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
K2 # 2!!# K"

q
:

(6)

Similar restrictions exist for negative m. These restrictions
yield the accessible magnetization domain shown in Fig. 2
for K ( #0:4. It is clear that this domain is not convex.
Entropy curves s!m" for some typical energies are given in
Fig. 3, demonstrating that the number of accessible mag-
netization intervals changes from one to three, and then to
two as the energy is lowered.

This feature of disconnected accessible magnetization
intervals, which is typical to systems with long-range
interactions, has profound implications on the dynamics.
In particular, starting from an initial condition which lies
within one of these intervals, local dynamics, such as the
one applied in this work, is unable to move the system to a
different accessible interval. Thus ergodicity is broken in
the microcanonical dynamics even at finite N.

To demonstrate this point we display in Fig. 4 the time
evolution of the magnetization for two cases: one in which
there is a single accessible magnetization interval, where
one sees that the magnetization switches between the
metastable m ( 0 state and the two stable states m (
'ms. In the other case the metastable m ( 0 state is
disconnected from the stable ones, making the system

unable to switch from one state to the other. Note that
this feature is characteristic of the microcanonical dynam-
ics. When local canonical dynamics, say, a Metropolis
algorithm [14], is applied, the system may cross the for-
bidden region (by moving to higher energy states where the
forbidden region diminishes). However, the breakdown of
ergodicity is manifested in the fact that the switching rate
between the accessible regions is exceedingly small, de-
creasing exponentially with N.

We conclude this study by considering the lifetime "!N"
of the m ( 0 state, when it is not the equilibrium state of
the system. In the case where m ( 0 is a metastable state,
corresponding to a local maximum of the entropy [such as
in Fig. 4(a)] we find that the life time satisfies ") eN!s
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FIG. 2. Accessible region in the !m; !" plane (shaded area) for
K ( #0:4. For energies in a certain range, gaps in the accessible
magnetization values are present.
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FIG. 3. The s!m" curves for K ( #0:4, and for typical energy
values, demonstrating that gaps in the accessible states develop
as the energy is lowered.
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FIG. 4. Time evolution of the magnetization for K ( #0:4
(a) in the ergodic region (! ( #0:318) and (b) in the nonergodic
region (! ( #0:325). The corresponding entropy curves are
shown in the insets.
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Applications (cont’d)

Dynamical phase transitions (Garrahan et al PRL 2007, JPA 2009)

I Fredrickson-Andersen (FA) model
I N particle system evolving in time
I Observable: At,N = KS entropy ∼ Nt

I

a

λ

k

∞

?

Generic for first-order phase transitions
ϕ

β u

s**s

u
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Nonconvex vs affine rate functions

Nondifferentiable λ(k) ⇒ I nonconvex or affine

a

I λ I

k a

Perturbed free energy:

λε(k) = lim
n→∞

1

n
ln〈enkAn+nεA2

n〉

Choose ε = 0−:

λε(k) is nondifferentiable ⇒ I is nonconvex

λε(k) is differentiable ⇒ I is affine

Hugo Touchette (QMUL) Nonconcave entropies February 2009 13 / 15

Conclusion

Nonconcave entropies: s 6= ϕ∗

Nonconvex rate functions: I 6= λ∗

Methods:
I Contraction principle
I Critical point analysis
I Generalized canonical ensemble

Numerical methods:
Method Nonconvex?

Direct sampling Y
Biased/cloning sampling N

(Giardina, Kurchan & Peliti PRL 2006) N
(Lecomte & Tailleur JSTAT 2007) N

Dominant eigenvalue of generator N
(Ground state method) N

Wang-Landau* Y
Multicanonical* Y
Rugh’s method* Y
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