
Non-classical large deviations in the AB model

Hugo Touchette

School of Mathematical Sciences
Queen Mary, University of London

Workshop on Computation of Transition Trajectories
and Rare Events in Non-Equilibrium Systems

ENS Lyon, France
13 June 2012

Hugo Touchette (QMUL) AB model June 2012 1 / 14

Outline

Study

Low-noise large deviations for stationary distribution

Fluctuation paths – instantons

Nonequilibrium case

Non-isolated attractor

Plan

1 Recap on Freidlin-Wentzell theory

2 AB model – results

3 Conclusion

Freddy Bouchet (ENS Lyon), HT
Non-classical large deviations for a noisy system
with non-isolated attractors, J. Stat. Mech. P05028, 2012

Hugo Touchette (QMUL) AB model June 2012 2 / 14



Noise-perturbed dynamical systems
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Fig. 19. (a) Random paths reaching the boundary ∂D of a region D in a time t . (b) Stable fixed point xs located in D. (c) Separatrix S delimiting the basins of

two attracting fixed points. Some paths on the boundary ∂D lie on the separatrix and are attracted by one or the other fixed point depending on whether

they start on the left or right of S.

The calculation of τ� is a classical problem in nonequilibrium statistical mechanics (see, e.g., [114,141]), and was solved

on themathematical front by Freidlin andWentzell [6], who treated it in the context of the general stochastic Eq. (223). Their

main result assumes that the unperturbed dynamics associated with Eq. (223) has a single attracting fixed point xs located

in D, and that all the points on ∂D are attracted to xs, so that the case of a boundary ∂D lying on a separatrix is excluded; see

Fig. 19(c). Under these assumptions, the following limit then holds:

lim
�→0

P

�
e
(V∗−δ)/� < τ� < e

(V∗+δ)/�
�

= 1, (235)

where

V
∗ = inf

x∈∂D
inf
t≥0

V (x, t|xs) (236)

and δ is any small positive constant. Moreover,

lim
�→0

� ln �τ�� = V
∗. (237)

The first limit shown in (235) states that the most probable escape time scales as τ� � e
V

∗/�
as � → 0. From this

concentration result, the second limit follows.

The complete proof of these results is quite involved; see Sec. 4.2 of [6] or Sec. 5.7 of [13]. However, there is a simple

argument due to Kautz [142] that can be used to understand the second result stating that �τ�� � e
V

∗/�
. The essential

observation is that the average time �τ�� of escape is roughly proportional to the escape rate r� , which is itself proportional

to the probability P
esc

� of escaping D. Thus �τ�� ∝ 1/Pesc

� , where

P
esc

� =
�

∂D

dx

� ∞

0

dt P�(x, t|xs). (238)

Applying Laplace’s approximation to this integral yields P
esc

� � e
−V

∗/�
with V

∗
given by Eq. (236), and therefore �τ�� � e

V
∗/�

,

as Eq. (237). The result of Freidlin and Wentzell is more precise, since it provides a Law of Large Numbers for τ� , not just an

estimate for �τ��.
The two previous examples are representative of the way large deviation techniques can be applied for calculating

stationary probability densities P�(x) and fixed-time probability densities P�(x, t|x0), as well as exit times and exit points.

The second example, in particular, can be used to derive a whole class of Arrhenius-type results of the form τ� � e
V

∗/�

for diffusion- or thermally-induced escape processes, including Kramers’s classical result for the escape time of a Brownian

particle trapped in a potential [114,141]. In the specific context of systems perturbed by thermal noise, the variational

principle expressed by Eq. (236) is often referred to as the principle of minimum available energy, since V
∗
can be shown to be

proportional to the activation energy, that is, the minimum energy required to induce the escape [142,143]. An application

of this principle for Josephson junctions is discussed by Kautz [142,143].

For practical applications, it is important to note that Freidlin–Wentzell can be generalized to nonlinear systems having

multiple attractors Ai, i = 1, 2, . . .. For these, the escape time τ�,i from a domain Di of attraction of Ai is estimated as

τ�,i � e
V

∗
i
/�, V

∗
i

= inf
x∈∂Di

inf
t≥0

V (x, t|xi), (239)

where xi is an initial point chosen inside Ai. For more than one attractor, the quasi-potential V (x) characterizing the

stationary distribution P�(x) over the whole state-space is also estimated as

V (x) = inf
i

Vi(x), (240)

Noisy system:

ẋ(t) = f (x(t)) +
√
ν ξ(t)

Gaussian white noise: ξ(t)
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with V
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as Eq. (237). The result of Freidlin and Wentzell is more precise, since it provides a Law of Large Numbers for τ� , not just an
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The two previous examples are representative of the way large deviation techniques can be applied for calculating

stationary probability densities P�(x) and fixed-time probability densities P�(x, t|x0), as well as exit times and exit points.

The second example, in particular, can be used to derive a whole class of Arrhenius-type results of the form τ� � e
V

∗/�

for diffusion- or thermally-induced escape processes, including Kramers’s classical result for the escape time of a Brownian

particle trapped in a potential [114,141]. In the specific context of systems perturbed by thermal noise, the variational

principle expressed by Eq. (236) is often referred to as the principle of minimum available energy, since V
∗
can be shown to be

proportional to the activation energy, that is, the minimum energy required to induce the escape [142,143]. An application

of this principle for Josephson junctions is discussed by Kautz [142,143].

For practical applications, it is important to note that Freidlin–Wentzell can be generalized to nonlinear systems having

multiple attractors Ai, i = 1, 2, . . .. For these, the escape time τ�,i from a domain Di of attraction of Ai is estimated as

τ�,i � e
V

∗
i
/�, V

∗
i

= inf
x∈∂Di

inf
t≥0

V (x, t|xi), (239)

where xi is an initial point chosen inside Ai. For more than one attractor, the quasi-potential V (x) characterizing the

stationary distribution P�(x) over the whole state-space is also estimated as

V (x) = inf
i

Vi(x), (240)

Zero-noise system:

ẋ(t) = f (x(t))

Fixed points: f (x∗) = 0

Attractor: xs

Interesting probabilities

Propagator: P(x , t|xs , 0) ∼ e−V (x ,t)/ν

Stationary distribution: P(x) ∼ e−V (x)/ν
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Stationary distribution

Path integral:

P(x , t|xs , 0) =

∫ x ,t

xs ,0
D[x ] P[x ]

Path probability:

P[x ] ∼ e−I [x]/ν , I [x ] =
1

2

∫ t

0
(ẋ − f (x))2 ds
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∗/�
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principle expressed by Eq. (236) is often referred to as the principle of minimum available energy, since V
∗
can be shown to be

proportional to the activation energy, that is, the minimum energy required to induce the escape [142,143]. An application
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For practical applications, it is important to note that Freidlin–Wentzell can be generalized to nonlinear systems having

multiple attractors Ai, i = 1, 2, . . .. For these, the escape time τ�,i from a domain Di of attraction of Ai is estimated as

τ�,i � e
V

∗
i
/�, V

∗
i

= inf
x∈∂Di

inf
t≥0
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where xi is an initial point chosen inside Ai. For more than one attractor, the quasi-potential V (x) characterizing the

stationary distribution P�(x) over the whole state-space is also estimated as

V (x) = inf
i

Vi(x), (240)

Large deviation approximation

P(x) ∼ e−V (x)/ν , V (x) = inf
x(0)=xs ,x(∞)=x

I [x ]

Most probable path = min action path = instanton

Onsager-Machlup 1950s; Graham 1980s; Freidlin-Wentzell 1970-80s

Semi-classical approximation
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Example: Gradient dynamics

Gradient system:

ẋ(t) = −∇U(x(t)) +
√
ν ξ(t)

Stationary distribution:

P(x) ∼ e−V (x)/ν , V (x) = 2U(x)

Instanton = time-reverse of decay path from x to xs

Consequence of detailed balance

Equilibrium system

This talk

P(x) ∼ e−V (x)/
√
ν

Non-gradient system

Nonequilibrium system

Not instanton-based
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AB model

Noiseless dynamics

Ȧ = −AB

Ḃ = A2

Stable line: A = 0,B > 0

Unstable line: A = 0,B < 0

Energy:

E = A2 + B2, Ė = 0
A

B

Stable

Unstable

{s

{u

Perturbed dynamics

Ȧ = −AB − νA + σA
√
ν ξA(t)

Ḃ = A2 − νB + σB
√
ν ξB(t)

Dissipation needed for stationarity

Toy model of hydrodynamic equations (∞ stable states)
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Stationary distribution

P(A,B)

Numerical integration of Fokker-Planck equation

Concentration around stable line as ν → 0

Radial symmetry away from stable line
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Large deviations near stable line
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A

IHA
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L

Ν=0.5
Ν=0.1

Ν=0.05

Ν=0.025

B = 1

Stationary distribution:

P(A,B) ∼ e−I (A,B)/ν

Rate function or quasi-potential:

I (A,B) =
B

σ2
A

A2 −
2σ2

A + σ2
B

8σ4
AB

A4 + O(A6)

I Instanton approximation = Fokker-Planck ν-expansion lowest order
I Fokker-Planck ν-expansion – higher order
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Large deviations near stable line (cont’d)

0 1 2 3 4

0
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0
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A

IHA
,B

L

B=3.5

B=3

B=2.5

B=2

B=1.5

B=1

Instanton: stable line → (A,B)
I I (A,B) = I [instanton] > 0

Decay path: (A,B)→ stable line
I I [decay path] = 0

Instanton 6= Time reverse of decay path

Nonequilibrium (non-gradient) system
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Nonequilibrium current

Fokker-Planck equation:

∂

∂t
P(A,B) = −∇ · J

Probability current:

J = (JA, JB)

Stationary current: ∇ · J = 0

Components:

JA = (−AB − νA)P(A,B)−
νσ2

A

2

∂P(A,B)

∂A

JB = (A2 − νB)P(A,B)−
νσ2

B

2

∂P(A,B)

∂B
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Large deviations near unstable line

Any point (A,B) reachable by
instanton of zero action!

Sub-instanton

Consequence:

P(A,B) ∼ e−0/ν

Meaning:

P(A,B) ∼ e−0/ν + corrections

Competings large deviations:

P(A,B) ∼ e−I (A,B)/ν︸ ︷︷ ︸
stable line

+ e−J(A,B)/
√
ν︸ ︷︷ ︸

unstable line

-4 -2 0 2 4

-4

-2

0

2

4

A

B

Excited

Decay

Indirect
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Large deviations near unstable line (cont’d)

Low-noise expansion of
Fokker-Planck equation

Ansatz:

P(A,B) ∼ e−J(A,B)/
√
ν

Hamilton-Jacobi equation
for J(A,B)

Solve in polar coordinates

Solution:

J(r) =
2
√

2

3
r3/2

J(A,B) =
2
√

2

3
(A2 + B2)3/4

-2 -1 0 1 2
0

2

4

6

8

A

IHA
,B

L

Ν=0.5

Ν=0.1

Ν=0.05

Ν=0.025

B = -1

Radially symmetric: Sub-instantons are radially symmetric
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Summary

AB model: Nonequilibrium system

Line of stable points connected to a line of unstable points

Low-noise large deviations:

P(A,B) ∼ e−I (A,B)/ν︸ ︷︷ ︸
stable line

+ e−J(A,B)/
√
ν︸ ︷︷ ︸

unstable line

Explicit rate functions
I Instanton approximation (Freidlin-Wentzell)
I Low-noise expansion of Fokker-Planck

Overall dominant term:

P(A,B) ∼ e−J(A,B)/
√
ν

Crucial ingredient: Non-isolated attractor

Hugo Touchette (QMUL) AB model June 2012 13 / 14

More general models

AsAs

Au

Au

instanton
instanton

instanton deterministicdeterministic

xx

(a) (b)

sub-instanton

Unconnected sets

All fluctuations paths are
instantons

P(x) ∼ e−I [instanton]/ν

Classical large deviations

Connected sets

Instantons + sub-instantons

P(x) ∼ e−I [sub-instanton]/να

Classical + non-classical large
deviations

Exponent α = 1
2 always?

Need nonequilibrium?
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