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SUMMARY

This thesis presents an in-depth study of statistical mechanical systems having microcano-

nical equilibrium properties, i.e., energy-dependent equilibrium properties, which cannot

be put in correspondence with their canonical or temperature-dependent equilibrium prop-

erties. A general theory of these systems which focuses both on the thermodynamic and

macrostate levels of description of systems is presented along the lines of a number of rig-

orous results derived recently by Ellis, Haven and Turkington (Journal of Statistical Physics,

2000). Several new results are also presented which relate the appearance of nonequivalent

microcanonical and canonical properties with first-order (discontinuous) phase transitions

and with nonequilibrium properties of systems.

Since the material presented in this thesis dwells on many elements of large deviations

theory which are not familiar to physicists, a self-contained introduction to this theory has

been included here. The presentation of the theory of nonequivalent microcanonical and

canonical properties follows together with explicit computations carried out in the con-

text of two simple spin models: a first original model involving a mixture of completely

correlated and completely uncorrelated spins, and another model known as the mean-field

Blume-Emery-Griffiths model.

Key words: Thermodynamics, equilibrium statistical mechanics, microcanonical and cano-

nical ensembles, nonequivalence of ensembles, entropy functions, large deviations
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RÉSUMÉ

Cette thèse présente une étude détaillée des systèmes statistiques possédant, à l’état d’équili-

bre, des propriétés physiques calculées en fonction de leur énergie (propriétés dites micro-

canoniques) n’ayant aucun équivalent au sein de leurs propriétés calculées en fonction de

leur température (propriétés dites canoniques). Une théorie générale de ces systèmes faisant

ressortir à la fois la description thermodynamique et la description en macro-états de la

mécanique statistique d’équilibre est construite ici suivant un certain nombre de résultats

formels obtenus récemment par Ellis, Haven et Turkington (Journal of Statistical Physics,

2000). Plusieurs nouveaux résultats reliant la non-équivalence des propriétés microcanon-

iques et canoniques aux transitions de phase de premier ordre (transitions discontinues) et

aux propriétés hors d’équilibre des systèmes sont aussi présentés.

Comme la théorie présentée ici s’appuie sur un lot de résultats issus de la théorie mathé-

matique des grandes déviations qui sont peu connus des physiciens, une introduction som-

maire à cette dernière theorie est d’abord présentée. Suit la théorie portant sur la non-

équivalence des propriétés microcanoniques et canoniques, puis plusieurs calculs explicites

illustrant certains points de cette théorie dans le contexte de deux modèles physiques de

spins bien précis: un premier modèle tout à fait original construit à partir d’un mélange de

spins complètement corrélés et complètement non-corrélés, et un deuxième modèle connu

sous le nom de modèle en champ moyen de Blume-Emery-Griffiths.

Mots clés: Thermodynamique, mécanique statistique d’équilibre, ensembles microcanon-

ique et canonique, non-équivalence d’ensembles, fonctions d’entropie, grandes déviations
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Nomenclature and Notations

RANDOM VARIABLES

Random variables are almost always represented by uppercase letters, while the specific out-

comes of these random variables are denoted by lowercase letters. The only exception to

this rule concerns the mean energy which is written as u, the total energy being written as

U . The space of all events of a given random variable X , or state space of X , is denoted by

the calligraphic letter X . We write X = x, for example, to mean that the random variable

X assumes the specific value x ∈X .

MEASURE-THEORETIC NOTATIONS

The formal notation P (A ∈ da) stands as a shorthand for the probability assignment

P (A ∈ [a, a + da]) which represents the probability that the random variable A takes

on a value in the infinitesimal interval [a, a+ da]. We write, in a similar manner,

P (A ∈ da) = P (da) = dP (a).

Note that although da is used in two different contexts, there can be no confusion: when da

is preceded by the symbol “∈,” da is to be interpreted as an infinitesimal interval of size da,

whereas when we write a+ da, what we mean of course is that da itself is the width of that

interval.

SYMBOLS FOR PHYSICAL QUANTITIES AND FUNCTIONS

Following a common practice held in physics, different functions which refer to the same

physical quantity are denoted in this thesis by the same letter. For example, the microca-

nonical entropy is written as s(u) when it is a function of the mean energy u, and as s(m)
when it is a function of the macrostate value m. The use of this excessive and ambiguous

notation is justified in part by the fact that physicists like to know what quantity they are

dealing with even if it is written as a function of different quantities. For the case of the

entropy, for example, they view s has being the quantity, and write s = s(u) and s = s(m)
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instead of s = f(u) and s = g(m) to express the quantity s as functions of the two other

quantities u and m.
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List of Symbols

� Exponential order approximation sign 1.2

inf Infimum (generalized min)

sup Supremum (generalized max)

A, X , Y , Z... Random variables

A , X , Y , Z ... Event (state) spaces

a, x, y, z... Events (values) of random variables

Xn = (X1, X2, . . . , Xn) Sequence of random variables or microstate 1.1, 2.1

xn = (x1, x2, . . . , xn) Specific outcome of Xn 1.1, 2.1

X = {x} one-particle state space 2.1

X n = {xn} n-particle state space or microstate space 2.1

P (·) Probability measure

p(·) Probability density function

E[X] Expected value of X 1.1

var(X), σ2 Variance of X 1.1
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u(m) Energy representation function 2.2
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In the books of physics the formulation of the fundamental notions of probability

theory as a rule is several decades behind the present scientific level, and the ana-

lytic apparatus of the theory of probability, mainly its limit theorems, which could

be used to establish rigorously the formulas of statistical mechanics without any

complicated special machinery, is completely ignored.

—A.I. Khinchin (1949), p. vii.
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Introduction

Temperature is a correlate of energy; a measure of the energetic disorder that takes place at the

microscopic level of all substance. This, in short, is what one learns about temperature by

taking a course on equilibrium statistical mechanics or by reading textbooks on the subject.

By learning how to visualize and model many-body physical systems as stochastic systems,

one finally comes to realize what the nature of temperature is, how it is defined mathemat-

ically, and how it is measured. Rub your thumb on a desk, and you will immediately feel

a rise of temperature on your skin. Why? Because what is measured by temperature is the

“wildness” of the motion of the particles located under your thumb: the more wildly the

particles move, the greater is their kinetic energy, and the greater, concomitantly, is their

temperature. Temperature is thus a mechanical concept: it emerges as a quantity or as a

sensation out of the random motion of a body’s particles. But then why is temperature felt

to be uniform if it emerges out of randomness? Because temperature is also statistical in na-

ture: it is a measure of the energy per particle averaged over the whole of a body. From this

viewpoint, the temperature of a single particle cannot be defined because its energy con-

stantly fluctuates. But the temperature of macroscopic bodies can be defined because the

microscopic random movements of the particles constituting a large body tend to “average

out” one another, so to speak, so as to let order and uniformity emerge at the macroscopic

level, the level of human experience.

It has been one of the great successes of the theory of equilibrium statistical mechanics

to explain what temperature is along the lines given above, and to overthrow, with these an-

swers, the old and now futile belief which hold that heat was a fluid released by hot bodies

[the enigmatic “caloric fluid”; see Truesdell (1980)]. Unfortunately, the same “energetic” or

“kinetic” interpretation of temperature seems to have played a somewhat negative role in

the development of the theory of equilibrium statistical mechanics by casting a shadow over

one of its most fundamental problem: namely, to prove that the equilibrium properties of

a body (any body) are the same whether they are calculated as a function of its internal en-

ergy or as a function of its temperature. This problem has evidently not much significance if

one views temperature and energy as being one-to-one related. But what one has to realize

is that this interpretation of temperature has gained a universal status only because it was

17



18 Introduction

verified in the past years to hold true for plenty of physical models, the perfect gas notably.

This stands obviously as an insufficient proof of universality; a better, definite proof should

proceed by proving in a rigorous manner that the body of equations used to predict the

equilibrium properties of a system as a function of its internal energy are totally equivalent

to the equations used to predict the same type of equilibrium properties as a function of

the temperature of the system. Such a proof, as we shall see in this thesis, can be given for

certain systems, but not all of them. In fact, we shall provide here a number of explicit ex-

amples of many-body systems which have, at equilibrium, two different sets of equilibrium

properties: one set parameterized by the energy variable, and another set parameterized by

the temperature variable.

The subject of the equivalence or nonequivalence of the energy and temperature de-

pendent properties of systems is not new. Ever since Gibbs (1902) introduced his canonical

probability distribution or “canonical ensemble” as a theoretical device to compute the equi-

librium properties of systems as a function of their temperature, the question was posed as

to whether this ensemble was equivalent to the other ensemble known to physicists: the

so-called “Ergode” or microcanonical ensemble of Boltzmann (1877) which expresses, in

probabilistic terms, the conservation of the energy of closed or isolated systems. To Gibbs,

the solution of this problem seemed obvious, and nowadays it is his solution that can be

found in almost every textbooks on statistical mechanics to clear the problem as solved.

Gibbs’ reasoning basically is that, although a system having a fixed temperature does not

have, theoretically speaking, only one definite value of energy (the canonical distribution is

“spread” over many energies), the fluctuations of the system’s energy should become negli-

gible in comparison with its total energy in the limit where the volume of the system tends

to infinity. In this limit, the so-called thermodynamic limit, the system should thus appear

to human observation as having a definite value of energy, which is exactly what the micro-

canonical ensemble assumes from the start.1 Conclusion: both the microcanonical and the

canonical ensembles should predict the same equilibrium properties of systems in the thermo-

dynamic limit.

Gibbs’s book is a milestone in the development of equilibrium statistical mechanics,

and its publication, not surprisingly, did much to enforce the idea that it does not matter

whether the equilibrium properties of a system are calculated from the point of view of the

1“For the average square of the anomalies of the energy, we find an expression which vanishes in comparison
to the square of the average energy, when the number of degrees of freedom is indefinitely increased. An ensem-
ble of systems in which the number of degrees of freedom is of the same order of magnitude as the number of
molecules in the bodies with which we experiment, if distributed canonically, would therefore appear to human
observation as an ensemble of systems in which all have the same energy.” Gibbs (1902, p. xi)
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microcanonical or the canonical ensemble, i.e., whether they are calculated as a function

of the energy or the temperature of the system, respectively. Gibbs himself was able to

find an explicit expression for the temperature of the perfect gas which shows that it is

directly proportional to its internal energy per particle. Moreover, after the publication

of Gibbs’s book, it was discovered that many noninteracting systems had indeed the same

microcanonical and canonical equilibrium properties. From this point on, it seemed then

only a small step to take but to think that the equilibrium energy of any large-enough system

could be related to its temperature. But the problem, unfortunately, is that this is not always

the case.

In the past three and a half decades, numerous systems have been discovered to have mi-

crocanonical equilibrium properties which cannot be accounted for within the framework

of the canonical ensemble. The nonequivalence of the two ensembles has been observed

for these systems both at the thermodynamic and the macrostate levels of description of

statistical mechanics, and, recently, a nearly complete theory of nonequivalent ensembles

has appeared in an effort to shelve once and for all the idea that the energy variable could

always be substituted for the temperature variable, and vice versa, when parameterizing the

equilibrium properties of systems. Our goal in this thesis is to offer a unified presentation

of this theory, emphasize its physical interpretation, and supplement it with original results

of our own (see the next section for a list of the novel contributions).

A peculiarity of what will be discussed in these pages is worth noticing from the start.

Among all the literature that has been published on the problem of nonequivalent microca-

nonical and canonical ensembles, we have decided in writing this thesis to focus our atten-

tion on one specific mathematical theory, due for the most part to Ellis, Haven and Turking-

ton (2000) and to Eyink and Spohn (1993), which offers a “close-to-definitive” solution to

this problem. The theory has, in the author’s opinion, a definite virtue in that it emphasizes

greatly the mathematical roots of the nonequivalence of ensembles problem, in addition to

achieving an economy of thought rarely matched by the physics papers treating the same

subject. However, we must mention that it has, in parallel, the unfortunate drawback of

being not easily approached by physicists since it makes use of many mathematical concepts

of the theory of large deviations and convex analysis which are not part of the average physi-

cist’s tool kit, so to speak. Great efforts, consequently, have been put into the writing of this

thesis to produce a presentation of a complete theory of nonequivalent ensembles, based on

the above authors’ work, which may be easily understood by physicists. To assist us in the

endeavour, we present herein two new simple physical models illustrating this theory, one

of which originating directly from the theory of large deviations.
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A last word of warning. Because our goal in this thesis is to emphasize the physical ideas,

we have omitted in the text many mathematical details that mathematicians would surely

consider essential, and have occasionally compromised perfect mathematical accuracy when

it benefits the exposition. References treating these details, when they exist, are however

always mentioned to assist the exigent reader. At the end, although physicists are likely to

complain of seeing too much mathematics, and mathematicians not enough, the author

believes that the balance between mathematics and physics reached in writing this work is a

fair and healthy one.

CONTRIBUTIONS OF THIS THESIS

The contributions of this thesis can be divided grosso modo into two categories: the pedagog-

ical contributions, which are the results of the author’s desire to write a complete account

of a theory which is easy to learn from, and the scientific contributions, which are, as the

name suggests, the novel mathematical and physical results reported here for the first time.

As part of the first category, we find

• Two self-contained introductory chapters (Chapters 1 and 2) which review all the

basic elements of the theory of large deviations needed for properly understanding

the content of the thesis. The first chapter is specifically devoted to the presentation

of the mathematical theory of large deviations, while the second goes on to explain

how the concepts of this theory enter in the formulation of most of the equations of

equilibrium statistical mechanics.

• An integrated and unified presentation of the theory of the equivalence and nonequiv-

alence of the microcanonical and canonical ensembles which stresses the mathemat-

ical roots of the problem (Chapters 3 and 4). Our discussion of this theory in these

chapters always begins with the study of a mathematical problem which bears some

relationship with the physical problems that we want to discuss. The purpose of these

mathematical “preludes” is to introduce new mathematical concepts not previously

seen, but, in a way, they are also there to provide a clear and bare light on the equiv-

alence of ensembles problem which is devoid of all the preconceptions that physicists

may have about this problem.

• An overview of the literature on the subject of nonequivalent ensembles as well as

many notes which compare what has been studied in the past and what has emerged

more recently as a complete theory of nonequivalent ensembles. In order not to hin-
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der our presentation of this theory, we have put this material at the end of each chapter

in a section called “Notes and Remarks.”

• Simpler proofs of all the results pertaining to the equivalence or nonequivalence of the

microcanonical and canonical ensembles. The order of presentation of these results

also differ from what can be found in the scientific literature. Here, we emphasize the

role played by the mean energy for establishing the equivalence or nonequivalence of

the two ensembles, and then go on thereafter to prove their equivalence or nonequiv-

alence in the most general way at the level of general macrostates (see Chapters 3 and

4).

In the second category, the category of scientific contributions, we find

• A thorough investigation of the relationship existing between nonequivalent ensem-

bles and first-order (discontinuous) canonical phase transitions. Our discussion greatly

unifies many results about this relationship that have appeared over the past years, in

addition to supplement these results with others (see Chapters 3 and 4).

• A re-evaluation of the connection that exists between nonequivalent ensembles and

the appearance of negative values of the heat capacity calculated from the point of

view of the microcanonical ensemble (see Chapter 3).

• An important conjecture which provides a link between the “nonequivalent” micro-

canonical equilibrium properties of systems not realized in the canonical ensemble,

on the one hand, and the nonequilibrium properties of these systems, on the other.

(See Chapter 4.)

• Two new physical illustrations of nonequivalent microcanonical and canonical en-

sembles. Both illustrations involve simple spin systems. One of them is so simple, in

fact, that it may well be presented to undergraduate students taking their first course

in statistical mechanics (see Chapter 5).

• Finally, an extensive list of open problems, many of them directly suggested by the

theory of large deviations (see Outlook and Open Problems).

These contributions, as well as many other results, will be summarized after they are

presented in the text in a summary list located at the end of each chapter.
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A NOTE TO THE EXAMINERS OF THIS THESIS

About half of what is contained in thesis is part of a paper entitled “Thermodynamic ver-

sus statistical nonequivalence of ensembles for the mean-field Blume-Emery-Griffiths model”

(Los Alamos physics preprints archive: cond-mat/0307007 ) written recently by the author

in collaboration with Richard S. Ellis and Bruce Turkington of the Department of Mathe-

matics and Statistics, University of Massachusetts. Apart from being submitted to the Los

Alamos preprints archive, this paper has been submitted for publication in the physics jour-

nal Physica A on June 30th, 2003. It has been accepted for publication in this journal on

November 5th, 2003, and is expected to be published in its final form during the spring of

2004. The personal contributions of the author in the writing of this paper are emphasized

at the end of the chapters in which these contributions appear. Further credits for the ma-

terial presented in this thesis which is taken from other sources are also to be found at the

end of each chapter.
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Preliminaries on Large Deviations Theory

This first chapter contains an introduction to the theory of large deviations which empha-

sizes the elements of this theory that are required to understand the content of this thesis.

We begin in the next section to present examples of large deviations which should help the

reader to build some intuition and a “pre-knowledge” of what these deviations are. In the

subsequent sections, we then spell out the fundamental properties of large deviations using

an intuitive yet precise mathematical language familiar to theoretical physicists. The rather

informal tone privileged for presenting the subject of large deviations reflects our belief that

a complete understanding of all the subtleties of this subject is not necessary for our pur-

poses. It would, in any case, require a whole book to develop the theory of large deviations

using all the notations that mathematicians have come to devise only this theory. And that,

we think, is best left to them.

1.1. EXAMPLES OF LARGE DEVIATIONS

Fraction of 1’s in a Sequence of Random Bits

To begin, we shall consider a sequence Xn = (X1, X2, . . . , Xn) composed of n binary

random variables taking values in the set {0, 1}. We suppose that these n random bits are

mutually independent, and that they are generated from the uniform probability distribu-

tion P (X = 0) = P (X = 1) = 1/2. What we are interested to find is the probability that

the fraction of 1’s in the sequence Xn assumes a rational value r ∈ {0, 1/n, 2/n, . . . , (n−
1)/n, 1}. For a given outcome xn = (x1, x2, . . . , xn) of Xn, this ratio is mathematically

defined as

Rn(xn) =
1
n

n∑
i=1

xi, (1.1)

23



24 Preliminaries on Large Deviations Theory

so that what we are looking for is the following probability:

P (Rn = r) =
∑

xn:Rn(xn)=r

P (xn). (1.2)

Here P (xn) is the probability of the sequence xn; it is equal to 2−n for all xn (the random

bits are unbiased).

To find the solution of this problem we simply need to count the number of binary n-

tuples which are composed of rn 1’s and (1−r)n 0’s. This is given of course by the binomial

coefficient (
n

nr

)
=

n!
(rn)![(1− r)n]!

, (1.3)

so that

P (Rn = r) =
n!

(rn)![(1− r)n]!
1
2n
. (1.4)

This result, like many exact solutions, does not provide much insight as to how P (Rn =
r) behaves as a function of r and n. The following approximation, however:

P (Rn = r) ' e−nI(r)

I(r) = ln 2 + r ln r + (1− r) ln(1− r), (1.5)

which may be obtained using Stirling’s approximation n! ' nne−n, does tell us much

about this behavior. It shows, among other things, that the sequences xn whose ratio of 0’s

differs appreciably from the ratio of 1’s are very unlikely to be generated in the process of

producing bit strings with independent and unbiased bits. Indeed, we can see that P (Rn =
r) decays exponentially fast to 0 as n → ∞ for all values of r 6= 1/2 (Figure 1.1), which

means that only the sequences xn which are such that Rn(xn) → 1/2 when n → ∞ have

a non-negligible probability to be observed in this limit. Because of this property, the latter

sequences are called the typical sequences.

Sums of Gaussian Random Variables

We now seek the probability density p(An = a) of the following mean sum:

An(Xn) =
1
n

n∑
i=1

Xi (1.6)



1.1. Examples of Large Deviations 25

Figure 1.1: (a) Continuous interpolation ofP (Rn = r) with r ∈ [0, 1] for the binary string problem.
(b) Rate of decay I(r) of P (Rn = r). The minimum of I(r), which locates the maximum of
P (Rn = r) for all values of n is attained for r = 1/2.

under the assumption that the n random variables X1, X2, . . . , Xn are mutually indepen-

dent and identically distributed (IID) according to the Normal or Gaussian probability

density

p(x) =
1√

2πσ2
e−(x−µ)/(2σ2), x ∈ R. (1.7)

In the above function, µ represents the expectation of the random variable X , defined as

µ = E[X] =
∫ +∞

−∞
xp(x)dx, (1.8)

whereas σ2 stands for the variance

var(X) = E[(X − µ)2] = E[X2]− E[X]2. (1.9)

Similarly as in (1.2), the density function p(An = a) may be written formally as

p(An = a) =
∫
{xn:An(xn)=a}

p(xn)dxn, (1.10)

where p(xn) is the probability density associated with the n outcomes of the random vari-

ables X1, X2, . . . , Xn. We may write equivalently

p(An = a) =
∫
Rn
δ(An(xn)− a)p(xn)dxn, (1.11)
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Figure 1.2: Generic parabolic form
of the rate function I(a) for the
Gaussian sum problem (a ∈ R).
The minimum and zero of I(a) is
attained for the mean value a = µ.

using Dirac’s delta distribution δ(x). At this point it is common to use the Fourier integral

representation of δ(x)

δ(x) =
1

2π

∫ ∞
−∞

eikxdk, (1.12)

and the fact that p(xn) is the product measure of p(x), to rewrite (1.11) as follows:

p(An = a) =
1

2π

∫ ∞
−∞

dk

∫
Rn
eik[An(xn)−a]p(xn)dxn

=
1

2π

∫ ∞
−∞

dk e−ika
n∏
j=1

∫ ∞
−∞

eikxj/np(xj)dxj

=
1

2π

∫ ∞
−∞

dk e−ika
[∫ ∞
−∞

eikx/np(x)dx
]n
. (1.13)

Performing the two remaining integrals then leads to

p(An = a) =
√

n

2πσ2
e−n(a−µ)2/(2σ2). (1.14)

This results only confirms the well-known fact that a sum of IID Gaussian random variables

is exactly Gaussian-distributed no matter how many random variables compose the sum.

Note that if we neglect the
√
n term in front of the exponential entering in the above

density, we obtain a result similar in form to the one found previously, namely,

p(An = a) ' e−nI(a), I(a) =
(a− µ)2

2σ2
. (1.15)

The functional exponent of decay I(a) is positive and vanishes if a = µ (Figure 1.2). Thus,

as before, any sequence xn such that An(xn) 6= µ for all n has an exponentially small

probability to appear, whereas the sequences xn such thatAn(xn)→ µ in the limit n→∞
form the typical sequences which are the most likely to be observed in the long run.



1.1. Examples of Large Deviations 27

Deviations of the Empirical Vector: Sanov’s Theorem

For our last exercise we consider a generalization of the first problem. We are given a se-

quence Xn = (X1, X2, . . . , Xn) of n IID random variables which are assumed to be dis-

crete. This only means that the outcomes of the Xi’s are drawn from a finite countable

set X = {x}; the distribution used to generate the members of X is denoted by P (x).

We denote by Nn(x) the number of times the symbol x ∈ X is seen in a given sequence

xn = (x1, x2, . . . , xn) of outcomes, and we define the frequencies of the symbols found in

xn by

Ln(x) =
Nn(x)
n

=
1
n

n∑
i=1

δxi,x. (1.16)

The set of values Ln(x) is obviously such that∑
x∈X

Ln(x) = 1. (1.17)

What we want to find is P (Ln = l), where Ln stands for the vector of components Ln(x),

and l is a particular value of Ln. As an example, let X = {0, 1} and xn = (0, 1, 0, 1, 1, 1).

Then Nn=6(0) = 2 and Nn=6(1) = 4, so that

Ln=6(0) =
2
6

=
1
3
, Ln=6(1) =

4
6

=
2
3
, (1.18)

and thus Ln=6 = (1/3, 2/3). In probability theory the vector Ln of symbol frequencies is

called the empirical vector.

Building on our experience of the first problem, it should be clear that the probability

distribution P (Ln = l) is given by the multinomial distribution

P (Ln = l) =
n!∏

x∈X

[nl(x)]!

∏
x∈X

P (x)nl(x). (1.19)

Therefore, putting to use Stirling’s approximation once more, we find

P (Ln = l) ' e−nI(l)

I(l) = D(l||P ) =
∑
x∈X

l(x) ln
l(x)
P (x)

. (1.20)

This exponential estimate of P (Ln = l) is known as Sanov’s Theorem (Sanov, 1961); the



28 Preliminaries on Large Deviations Theory

quantity D(l||P ) is called the relative entropy or Kullback-Leibler distance between l and

P . Notice that D(l||P ) > 0 if l 6= P , i.e., if l(x) 6= P (x) for at least one value x ∈ X .

Accordingly, if P 6= l, then we have that P (Ln = l) goes to 0 exponentially fast as n→∞.

If, on the other hand, we have l(x) = P (x) for all x ∈ X , then it is easily verified that

D(l||P ) = 0, so that P (Ln = P ) → 1 in the limit where n → ∞ [see Cover and Thomas

(1991)].

1.2. THE LARGE DEVIATION PRINCIPLE

Our goal in going through the previous examples was to demonstrate the ubiquity of the

exponential decaying form e−nI for approximating probability distributions or probability

densities of sums of random variables. These approximations and the theory which stud-

ies these approximations, namely the theory of large deviations, play a central role in the

asymptotic analysis of random sums because they embody basically all there is to know

about the large-n behavior of their associated probability distributions or densities. They

constitute, in some sense, a zeroth level of approximation, for they suppress any other con-

ceivable polynomial factors in n in the limit where n → ∞, and thus stand as dominant

contributions of probability measures whenever they appear. Our aim in this section is to

make this reasoning more rigorous by reviewing a few basic definitions and notations relat-

ing to large deviation approximations.

Definition of the Large Deviation Principle

In the jargon of large deviations theory, an approximation of the form P (event) ' e−nI is

referred to as a large deviation principle. To make this a mathematically precise term, the

following definition is usually given. Let P (An ∈ B) be the probability that the random

variable An takes on a value in the event set B. We say that P (An ∈ B) satisfies a large

deviation principle with rate exponent IB if the limit

lim
n→∞

− 1
n

lnP (An ∈ B) = IB

exists and is independent of n. In other words, P (An ∈ B) satisfies a large deviation

principle with rate exponent IB when the former quantity, plotted as a function of n on a

1/n-log scale, is seen to converge to a constant as n→∞. Those who are familiar with the

small-o notation may also convince themselves that P (An ∈ B) satisfies a large deviation

principle with rate exponent IB if P (An ∈ B) is approximately exponential in n up to a
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o(n) correction term in the exponent or up to a o(1) correction to IB , i.e.,

P (An ∈ B) = enIB+o(n) = en[IB+o(1)]. (1.21)

All the large deviations that we have treated in the previous section fall in this definition

in an obvious manner, but they are more specific in a way because they refer to single events

of the form An = a. For the binary string problem, for example, what we found was that

lim
n→∞

− 1
n

lnP (An = a) = I(a), (1.22)

where I(a) is a continuous function of a which, in this context, is called the rate function

rather than the rate exponent. A similar result was also obtained for the case of the Gaussian

mean sum, although, for this case, we have worked with the probability density ofAn not the

probability thatAn = a since the latter probability makes evidently no sense for continuous

random variables. Our large deviation density result can nevertheless be translated into the

language of probabilities: simply exploit the interpretation of probability densities to write

p(An = a)da = P (An ∈ [a, a+ da]) (1.23)

and

P (An ∈ [a, a+ da]) ' e−nI(a)da, (1.24)

using the large deviation principle of (1.15). In this way, the rate function I(a) is recovered

just as for discrete random variables by taking the logarithmic limit in n:

lim
n→∞

− 1
n

lnP (An ∈ [a, a+ da]) = I(a)− lim
n→∞

ln da
n

= I(a). (1.25)

The Continuum Limit

We shall encounter in this thesis many cases of discrete random variables parameterized by

nwhose event space may be viewed as “converging” to a continuous space in the limit where

n → ∞. A situation of the sort was in fact already encountered when we considered the

fraction Rn of 1’s in binary strings made out of n random bits. In this example, we noted

that Rn takes values in the set of rational values of the form i/n, i = 0, 1, . . . , n. Now,

what we want to point out about this example is that, as these rational values populate the

real interval [0, 1] more and more densely as n → ∞, Rn can conveniently be thought of

as a continuous random variable taking values anywhere in the continuous interval [0, 1].
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This way of thinking is obviously just an expedient for simplifying the analysis of Rn: the

set of rational numbersQ cannot be taken to converge to the set R of real numbers! How-

ever, it makes life easier to assume that such a convergence takes place. To make sure that

discrete random variables of this kind, which, in effect, “look” continuous as n gets large,

are rigorously distinguished from real continuous random variables, which are continuous

for all values of n, the former type of random variables will be referred to as being quasi-

continuous.

In this thesis, we shall often appeal to this discrete-to-continuous limit, or so-called

continuum limit as it is known in physics, to replace a “densely-defined” discrete proba-

bility distribution P (Rn = r) ruling the outcomes of a quasi-continuous random variable

Rn, such as the one found in Figure 1.1, by a continuous probability measure of the form

P (Rn ∈ [r, r+dr]). The rationale for such a substitution is to be found in the fact that sums

involving the probability distribution P (Rn = r) can be approximated, in the continuum

limit, by definite integrals involving probability densities, i.e.,

E[f(Rn)] =
∑
r∈R

f(r) P (Rn = r)
n→∞'

∫
R
f(r) p(Rn = r)dr, (1.26)

where f(Rn) is an arbitrary continuous function of Rn. This naturally suggests the follow-

ing replacement rule:

“P (Rn = r)” −→ “P (Rn ∈ [r, r + dr])” (1.27)

as a formal device for taking the continuum limit of Rn.

Equipped with this rule, it is the more reasonable to write a large deviation principle for

Rn in the limit of very large n as

P (Rn ∈ [r, r + dr]) � e−nI(r)dr (1.28)

instead of just

P (Rn = r) � e−nI(r). (1.29)

In this way, we shall be able to handle large deviations of quasi-continuous random vari-

ables using the exact same notations as continuous random variables. To spare us from the

trouble of constantly writing the interval [r, r+dr], we shall also use the following compact

notation:

P (Rn ∈ dr) = P (Rn ∈ [r, r + dr]) (1.30)
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(see Nomenclature). Note that although the differential element dr above is not exponen-

tial in n, it has to be included in the expression of large deviation principles in order for

expectation values to be correctly written as in

E[f(Rn)] =
∫

R
f(r) P (Rn ∈ dr) =

∫
R
f(r) e−nI(r)dr. (1.31)

Asymptotic Notation

We shall find it convenient, as a final expedient for cutting in the notations, to re-express

the logarithmic limit involved in the definition of the large deviation principle using the

formula

P (An ∈ da) � e−nI(a)da (1.32)

to emphasize the fact that the probability P (An ∈ da) has, to a first degree of approxima-

tion, the form of a decaying exponential as a function of n with I(a) as the exponent of

decay. The special sign ‘�’ is used here instead of the approximation sign ‘'’ to stress that,

as n → ∞, the dominant part of the exact expression of P (An ∈ da) is the exponential

function e−nI(a). In this sense, the sign ‘�’ may be interpreted as expressing a sort of equal-

ity relationship with respect to the logarithmic scale. That is, we may interpret the notation

yn � zn as meaning that yn “equals” zn up to first order in their exponents, so that

lim
n→∞

1
n

ln yn = lim
n→∞

1
n

ln zn (1.33)

This interpretation of ‘�’ is in perfect agreement with (1.21) as well as with our definition

of large deviation approximations in general.

1.3. CALCULATING THE RATE FUNCTION

Many large deviations results can be derived, as was done in the previous sections, by hav-

ing recourse to asymptotic formulae such as Stirling’s approximation. In the general, how-

ever, it is more practical to derive the existence of large deviation principles and to calcu-

late their associated rate functions by having recourse to a general-purpose result known as

the Gärtner-Ellis Theorem. This theorem is, in essence, a generating-functional technique

which transforms the problem of calculating P (An ∈ da) into the often more tractable

problem of inverting the Laplace transform of this probability measure.
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Statement of the Gärtner-Ellis Theorem

Let us consider a random variable An, continuous or quasi-continuous, parameterized by

n. The exact nature ofAn need not be specified at this point, but to put things on a concrete

level, the reader may imagine that An is a mean sum of n random variables. Now, let us

define the quantity

Wn(k) = E[enkAn ] (1.34)

as the generating function or partition function of An and

λ(k) = lim
n→∞

1
n

lnWn(k) (1.35)

as the cumulant generating function or free energy function of An. In terms of the latter

quantity, the Gärtner-Ellis Theorem states that if λ(k) is differentiable over its entire do-

main of existence, including at the value k = 0, then P (An ∈ da) satisfies a large deviation

principle with a rate function I(a) given by the Legendre-Fenchel transform of λ(k); in

symbols,

P (An ∈ da) � e−nI(a)da, (1.36)

with

I(a) = sup
k
{ka− λ(k)}. (1.37)

The supremum transform is what is called a Legendre-Fenchel transform.

The theorem of Gärtner and Ellis is very useful in practical calculations, as will be seen

in the next section. But it is worth noting that not all large deviation results can be proved

using this theorem. In the next chapters we shall be particularly interested to study rate

functions which cannot be calculated as the Legendre-Fenchel transform of their associated

free energy. The “plausibility proof” of the Gärtner-Ellis Theorem given in the next para-

graphs should give some preliminary insights as to how these “anomalous” rate functions

are constructed.

Plausibility Proof of the Gärtner-Ellis Theorem

Let us suppose that P (An ∈ da) satisfies a large deviation principle with rate function

I(a); that is, suppose that P (An ∈ da) � e−nI(a)da. What we aim at is to find the explicit
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expression of I(a). To arrive at this expression, we proceed to evaluate the partition function

Wn(k) = E[enkAn ] =
∫

A
enkaP (An ∈ da) (1.38)

of An by exploiting the exponential order of P (An ∈ da) and by working in the limit of

very large values of n. Using the large deviation approximation for P (An ∈ da), Wn(k)
can be expressed as

Wn(k) �
∫

A
enkae−nI(a)da =

∫
A
en[ka−I(a)]da. (1.39)

At this point we approximate the integral as being given by the largest value of the integrand

that lies in the range A of An. This approximation, known as Laplace’s Method or simply

as Laplace’s integral approximation [see Bender and Orszag (1978)], is a natural approxi-

mation to consider here because the error incurred from using it is of the same order as the

large deviation approximation itself. Hence, assuming that a largest integrand value exists

and is unique, we obtain

Wn(k) � exp
(
n sup

a
{ka− I(a)}

)
, (1.40)

neglecting again any sub-exponential correction factors in the exact expression of Wn(k).

The above equation is interesting for two reasons. First, it shows that if P (An ∈ da)
satisfies a large deviation principle with rate function I(a), then Wn(k) must also satisfy a

form of large deviation principle, namely

Wn(k) � enλ(k), (1.41)

with a “rate function” λ(k) corresponding to the Legendre-Fenchel transform of I(a):

λ(k) = sup
a
{ka− I(a)}. (1.42)

Second, it shows that if the Legendre-Fenchel transform shown above could somehow be

inverted, then we would be in a position to obtain I(a) as a function of λ(k). In this case,

the obvious question that we have to face is, can this be achieved? namely, can Legendre-

Fenchel transforms be inverted? The answer is yes: If the rate function I(a) is convex, then
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the Legendre-Fenchel transform is inverted by repeating the transform itself, so that

I(a) = sup
k
{ka− λ(k)}. (1.43)

This is as close as we can get to the statement of the Gärtner-Ellis Theorem without actu-

ally proving this theorem! To be more complete, we should go on to explain why Legendre-

Fenchel transforms are invertible for the class of convex functions, and how the convexity

property of I(a) relates to the differentiability property of λ(k). This we shall postpone to

Chapter 3.

1.4. APPLICATIONS FOR SUMS OF IID RANDOM VARIABLES

To acquire a minimal working knowledge of the Gärtner-Ellis Theorem, and to indulge

ourselves in the joy of doing simple calculations, we shall consider in this section a number

of different sums of independent and identically distributed (IID) random variables, and

calculate the rate functions associated with these sums. The case of IID random variables is

easy to handle because λ(k) reduces to

λ(k) = lim
n→∞

1
n

lnE

[
exp

(
k

n∑
i=1

Xi

)]

= lim
n→∞

1
n

ln
n∏
i=1

E[ekXi ] (1.44)

as a result of the independency property, and to

λ(k) = lim
n→∞

1
n

lnE[ekX ]n = lnE[ekX ] (1.45)

by taking into account the fact that the random variables X1, X2, . . . , Xn are identically

distributed. Thus, all we have to do in order to find I(a) is to evaluate the simple expectation

value E[ekX ] which involves no limits in n, take the logarithm of the result, and calculate

finally its Legendre-Fenchel transform.

Gaussian Random Variables Revisited

Consider again the mean sum An of Gaussian IID random variables studied in Section 1.1.

The cumulant generating function or free energy function associated with the Gaussian
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density of equation (1.7) is readily evaluated to be

λ(k) = ln
∫ ∞
−∞

p(x)ekxdx = µk +
1
2
σ2k2, (1.46)

with k ∈ R. Since λ(k) is everywhere differentiable, the rate function I(a) governing the

probability density of An can be calculated as the Legendre-Fenchel transform of λ(k):

I(a) = sup
k∈R
{ka− λ(k)}. (1.47)

To find the supremum value, we look for the value of k which achieves the supremum by

taking the derivative with respect to k of the right-hand side of the above equation and make

the result equal to 0. This yields

λ′(k) = µ+ σ2k = a, (1.48)

so that

k(a) =
a− µ
σ2

. (1.49)

The rate function is thus given by

I(a) = k(a)a− λ(k(a)) =
(a− µ)2

2σ2
. (1.50)

where a ∈ R. This result matches exactly, as expected, the exponential estimate that we

obtained before using a far more complicated method.

Binary±1 Random Variables

Suppose now that the mean sum An is composed of n IID binary random variables taking

values in the set X = {−1,+1} according to the uniform probability distribution

P (X = −1) = P (X = +1) =
1
2
. (1.51)

The free energy function associated with this probability distribution is

λ(k) = ln cosh k, k ∈ R. (1.52)
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Figure 1.3: Rate function I(a) for a mean
sum of IID discrete random variables
taking values in {−1,+1}.

It can easily be checked again that λ(k) satisfies all the requirements of the Gärtner-Ellis

Theorem which implies that I(a) can be obtained exactly as before by solving the differential

equation λ′(k) = a for k and inserting the result in

I(a) = k(a)a− λ(k(a)). (1.53)

What is found from these steps is

I(a) = a arctanh a− ln cosh arctanh a, (1.54)

where a ∈ [−1, 1]. Using the two identities

cosh a =
1√

1− tanh2 a

arctanh a =
1
2

ln
(

1 + a

1− a

)
, (1.55)

we can also rewrite I(a) in a more illuminating fashion as

I(a) =
1 + a

2
ln(1 + a) +

(1− a)
2

ln(1− a), a ∈ [−1, 1]. (1.56)

The graph of this rate function is shown in Figure 1.3. Its shape is very similar to the

shape of the rate function found previously in the context of the bit string problem (Fig-

ure 1.1), but the minimum and zero of I(a) is now located at a= 0.

Sanov’s Theorem Revisited

Although we stated the theorem of Gärtner and Ellis for the case of scalar random variables,

its result may be applied to other kinds of random variables, even random vectors! In the
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case of vectors, the only modification that has to be made at the level of the free energy is

to replace the ordinary product kAn by the scalar product k ·An, k and An being now two

vectors of the same dimension.

To illustrate this generalization, consider again the problem of determining the prob-

ability distribution P (Ln = l) associated with the empirical vector Ln for sequences of

IID random variables (see Section 1.1 for the definitions of these quantities). Given the

definition of the empirical vector displayed in (1.16), the free energy is calculated as follows:

λ(k) = lim
n→∞

1
n

lnE[enk·Ln ]

= lim
n→∞

1
n

lnE

[
exp

(
n∑
i=1

∑
x∈X

k(x)δXi,x

)]

= lim
n→∞

1
n

lnE

[
exp

(
n∑
i=1

k(Xi)

)]
. (1.57)

But since the random variables X1, X2, . . . , Xn are IID, we may forget about the limit in n

so that

λ(k) = lim
n→∞

1
n

lnE[ek(X)]n

= lnE[ek(X)]

= ln

(∑
x∈X

P (x)ek(x)

)
. (1.58)

At this point, we find the rate function I(l) associated with the large deviation principle

P (Ln ∈ dl) � e−nI(l)dl (1.59)

similarly as in equation (1.48) by solving the set of equations

∂

∂k(x)
λ(k) = l(x), x ∈X (1.60)

for a given vector k. Despite the monstrous look of this vectorial differential equation in-

volving a gradient with respect to k, its solution is easily found to satisfy

kl(x) = ln
l(x)
P (x)

+ λ(kl). (1.61)
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This last equation is an implicit equation satisfied by kl; it can directly be substituted in

I(l) = kl · l − λ(kl) (1.62)

to obtain finally

I(l) = D(l||P ) =
∑
x∈X

l(x) ln
l(x)
P (x)

. (1.63)

One may be interested to know that the above result which, we recall, goes by the same of

Sanov’s Theorem, holds for any type of event sets X , even continuous ones. For this latter

type of sets, the empirical vector Ln(x) represents an empirical density of occurrence of the

symbols x ∈ X , and the derivatives involved in (1.60) must be interpreted as functional

derivatives.

1.5. PROPERTIES OF λ(k) AND I(a)

We now state and prove a number of properties satisfied by the free energy function λ(k)
and the rate function I(a). The properties listed hold for any random variable An under

the conditions stated, not just mean sums of IID random variables.

Properties of λ(k) at k = 0

Since probability distributions are by definition normalized to 1, we must have

λ(k = 0) = lim
n→∞

1
n

lnE[e0] = 0. (1.64)

Moreover,

λ′(k = 0) = lim
n→∞

1
E[eknAn ]

E[AneknAn ]
∣∣∣∣
k=0

= lim
n→∞

E[An], (1.65)

provided that λ(k) exists. For the case of IID sums, this result reduces to

λ′(k = 0) = E[X] = µ. (1.66)
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In the same vein,

λ′′(k = 0) = lim
n→∞

E[nA2
ne
knAn ]

E[eknAn ]
− E[nAneknAn ]E[AneknAn ]

E[eknAn ]2

∣∣∣∣
k=0

= lim
n→∞

nE[A2
n]− nE[An]2

= lim
n→∞

n var(An). (1.67)

For sums of IID random variables, we thus have

λ′′(k = 0) = E[X2]− E[X]2 = var(X) = σ2. (1.68)

Finally, from Jensen’s inequality (see Cover and Thomas, 1991), we find

λ(k) = lim
n→∞

1
n

lnE[eknAn ]

≥ lim
n→∞

1
n
E[ln eknAn ]

= lim
n→∞

kE[An] (1.69)

i.e.,

λ(k) ≥ kE[X] = kµ (1.70)

for IID random variables, with equality in both results if and only if k = 0. This last

property as well as the two first are illustrated in Figure 1.4 for the case of IID sums.

Convexity of λ(k)

The function λ(k), if it exists, is always convex in k. This comes as a general consequence of

Hölder’s inequality

∑
i

|yizi| ≤

(∑
i

|yi|1/p
)p(∑

i

|zi|1/q
)q

, (1.71)

where 0 ≤ p, q ≤ 1, p + q = 1 [see Zwillinger (1996) and Dembo and Zeitouni (1998)].

Indeed, using this inequality, we can write

α lnE[enk1An ] + (1− α) lnE[enk2An ] = lnE[enk1An ]αE[enk2An ](1−α)

≥ lnE[(enk1An)α(enk2An)(1−α)]

= lnE[en[αk1+(1−α)k2]An ]. (1.72)
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Whence

λ(αk1 + (1− α)k2) ≤ αλ(k1) + (1− α)λ(k2). (1.73)

Legendre Transform Equations

We have seen in treating all the previous examples of mean sums that the Legendre-Fenchel

transform involved in the statement of the Gärtner-Ellis Theorem actually reduces to a

derivative-transform given by

I(a) = k(a)a− λ(k(a)), (1.74)

where k(a) represents the unique root of the differential equation λ′(k) = a. Such a trans-

form is known as a Legendre transform; it arises here because λ(k) is everywhere differen-

tiable, as required by the Gärtner-Ellis Theorem itself, and because λ(k) is always convex, as

mentioned above.

The Legendre transform enjoys many interesting properties. First, since λ(k) is convex,

λ′(k) has to be monotonically increasing, and so the function k(a) can be uniquely inverted

so as to obtain the function a(k). The latter function obviously satisfies the equation

λ′(k) = a(k) (1.75)

The form of the Legendre transform also leads to

I ′(a(k)) = k or I ′(a) = k(a). (1.76)

Indeed, differentiating expression (1.74) with respect to a yields

dI(a)
da

=
dk(a)
da

a+ k(a)− dλ(k)
dk

dk(a)
da

=
dk(a)
da

a+ k(a)− adk(a)
da

= k(a). (1.77)

The graphical interpretation of all these equations relating the slope values of λ(k) and

I(a) to a(k) and k(a), respectively, is shown in Figure 1.4.
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Figure 1.4: Generic properties of the free energy function λ(k) (left) and rate function I(a) (right).

Concavity of I(a)

Rate functions obtained from the Gärtner-Ellis Theorem are necessarily strictly convex. This

comes as a consequence of the fact that Legendre transforms preserve the convexity or con-

cavity properties of the functions on which they are applied. To be sure, differentiate another

time the result of (1.77) so as to obtain the second derivative of I(a):

d2I(a)
da2

=
dk(a)
da

=
(
da(k)
dk

)−1

=
(
d2λ(k)
dk2

)−1

. (1.78)

This demonstrates that the curvature of I(a) is the inverse curvature of λ(k); for the case of

IID sums, in particular,

I ′′(a = µ) = [λ′′(k = 0)]−1 =
1
σ2
. (1.79)

Accordingly, since λ(k) is always convex (i.e., λ′′(k) ≥ 0), I(a) must always be convex as

well (i.e., I ′′(a) ≥ 0).

Zero of I(a): The Law of Large Numbers

In the case where I(a) is strictly convex, I(a) must have a single minimum and zero located

at the value a = E[A∞] = atyp (most probable or typical value). To prove this property,

we use two of the properties proved above, namely λ′(k = 0) = atyp and λ(k = 0) = 0, to

write

I(atyp) = k(atyp)atyp − λ(k(atyp)) = 0 · atyp − 0 = 0. (1.80)
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The existence of this unique zero of the rate function is guaranteed by the Law of Large

Numbers which may loosely be stated as follows:

P (An ∈ [atyp, atyp + da]) � e−nI(atyp)da = 1. (1.81)

In other terms

lim
n→∞

An = lim
n→∞

E[An] = atyp (1.82)

in probability. This shows that running averages converge to expectation values almost

surely (see Figure 1.1).

It must be kept in mind that large deviations approximations are exponential-order

approximations of probability measures; hence the fact that we directly get the value 1 for

the probability of the eventAn = atyp. Notice also that I(a) may in general have more than

one global minimum, and may have local minima in addition to global ones. The positions

of the global minima give the most probable values of An just as in the case of a single

minimum.

Positivity of I(a)

Rate functions are always such that I(a) ≥ 0; see den Hollander (2000) or Dembo and

Zeitouni (1998) for a proof of this result. A negative rate function would imply that large

deviation probabilities diverge to infinity as n→∞.

Convex Minimum of I(a): The Central Limit Theorem

The appearance of a single global minimum of strictly convex rate functions can be related

to the Central Limit Theorem. Indeed, for “small” deviations of An close to the expected

value E[A∞], the rate function I(a) can be expanded in a Taylor series to second order to

obtain

I(a) ' 1
2
I ′′(atyp)(a− atyp)2. (1.83)

This quadratic approximation of I(a) implies a Gaussian approximation for P (An ∈ da)
around a = atyp:

P (An ∈ da) � e−nc(a−atyp)2
da, (1.84)

with c = I ′′(atyp)/2. (The constant c is simply equal to σ2 for IID sums.)

The Gaussian approximation can be shown to be valid so long as An = O(1/
√
n)

or, equivalently, nAn = O(
√
n) [see Dembo and Zeitouni (1998)]. This may begin to
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put some light on the meaning of the term “large deviations.” On the one hand, a small

deviations of the mean sum An is a value a for which the quadratic approximation to I(a)
can be considered to be a “good” approximation. A large deviation, on the other hand, is

a mean sum value a for which the true rate function I(a) departs in a non-negligeable way

from the Gaussian quadratic approximation, and for which, therefore, the Central Limit

Theorem ceases to be useful.

1.6. MORE CONSEQUENCES OF LAPLACE’S METHOD

Concentration Property

Imagine that we are interested to know the expected value of a given random variableAn. If

P (An ∈ da) satisfies a large deviation function with convex rate function I(a), thenE[An]
can easily be calculated: simply apply the rule of Laplace’s Method to obtain

E[An] =
∫

A
aP (An ∈ da)

�
∫

A
ae−nI(a)da

� arg inf
a∈A

I(a), (1.85)

provided that I(a) has a unique global minimizer. If this is indeed the case, then what these

equations say is that the outcomes of An are exponentially concentrated (in terms of their

probabilities) around the most probable or dominant value of An. This, in a way, is just a

re-statement of the Law of Large Numbers which states, informally again, that

P (An ∈ da)→ δ(a− atyp)da, (1.86)

as n→∞, atyp being the dominant or typical value of An (see Figure 1.1).

The Contraction Principle

Suppose now that we have worked out the rate function of a given random variable An,

and that we want to derive the rate function of another random variable Bn which is a

contraction of An, that is, which is such that Bn = h(An) for some continuous mapping

h : A → B. Is there a way to compute IB(b) from IA(a)? The answer is yes: simply apply
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Laplace’s Method in the course of calculating P (Bn ∈ db) from P (An ∈ da) to obtain

P (Bn ∈ db) =
∫
{a:h(a)=b}

P (An ∈ da)

�
∫
{a:h(a)=b}

e−nIA(a)da

� exp
(
−n inf

a:h(a)=b
IA(a)

)
da (1.87)

and

P (Bn ∈ db) � exp
(
−n inf

a:h(a)=b
IA(a)

)
db

|h′(a)|
, (1.88)

where the term |h′(a)| arises as the Jacobian of the transformation h(a) = b. This proves

that

P (Bn ∈ db) � e−nIB(b)db (1.89)

with

IB(b) = inf
a:h(a)=b

IA(a). (1.90)

This general reduction of one rate function to another is called a contraction principle.

It can be used, among many applications, to derive the rate functions of mean sums of IID

random variables from Sanov’s Theorem. For this precise case, the function h(Ln) realizing

the contraction between the empirical vector Ln and the scalar values a of the mean sum

An is given by

h(Ln) =
∑
x∈X

xLn(x) =
1
n

n∑
i=1

Xi. (1.91)

SUMMARY OF CHAPTER

• Large deviation principle: The probability measure

P (An ∈ da) = P (An ∈ [a, a+ da]) (1.92)

is said to obey a large deviation principle if the limit

lim
n→∞

− 1
n

lnP (An ∈ da) = I(a) (1.93)
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exists, and is independent of n for all members a of the event space A of the random

variable An. The formal notation

P (An ∈ da) � e−nI(a)da (1.94)

is used as a shorthand notation for the logarithmic limit shown above.

• Generating function or partition function: Wn(k) = E[eknAn ].

• Cumulant generating function or free energy function:

λ(k) = lim
n→∞

1
n

lnWn(k). (1.95)

• Legendre-Fenchel transform of I : If P (An ∈ da) satisfies a large deviation principle

with rate function I(a), then

λ(k) = sup
a
{ka− I(a)}. (1.96)

The result holds independently of the form of I(a), and yields an always convex func-

tion of k. If An is a vectorial random variable, then the product ka in the above

formula should be understood as the scalar product k · a.

• Gärtner-Ellis Theorem: If λ(k) is differentiable everywhere over its range of conver-

gence, including in a neighborhood of k = 0, then P (An ∈ a) � e−nI(a)da with

I(a) = sup
k
{ka− λ(k)}. (1.97)

The rate function thus calculated is always strictly convex.

• Contraction principle: LetAn andBn be two random variables having rate functions

IA(a) and IB(b), respectively, and let h : A → B be a contraction of Bn to An, i.e.,

a continuous function mapping the event space A of An onto the event space B of

Bn. Then,

IB(b) = inf
a:h(a)=b

IA(a). (1.98)
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NOTES AND REMARKS

References on Large Deviations Theory

Introductions to the theory of large deviations similar to the one given in this chapter can

be found in the review papers of Oono (1989), Amann and Atmanspacher (1999), Ellis

(1995, 1999) and Lewis and Russell (1996). The reader who wishes, on the other hand, to

learn more about the mathematical subtleties of this theory is invited to consult the books

of Dembo and Zeitouni (1998), Ellis (1985) and den Hollander (2000). However, let he or

she be warned that much mathematical maturity is required to follow the content of these

books: mathematicians take a great care of proving the existence of limits and in developing

high-level notations to rigorously handle complicated limits such as those involved in what

we called the continuum limit.

Our approach here has been to purposely avoid such notations, and much simplification

is achieved by doing so. The fact is that physicists rarely care about rigor when they play with

the continuum limit because, for them, it is a natural limit. They just think of it as they see

the world that surrounds them: this apparently continuous world which is composed, at the

very bottom, of discrete objects called particles.

The Genesis of Large Deviations in Brief

Much of what is referred to nowadays as the theory of large deviations emerged during the

1970s from the independent works of Donsker and Varadhan, and Freidlin and Wentzel (see

Dembo and Zeitouni (1998) for an introduction to the original literature). However, the

real roots of the subject seems to be much older. The Gärtner-Ellis Theorem, in particular,

which is the result of the independent efforts of Gärtner (1977) and Ellis (1984), was already

known to Cramér (1938) who proved it for the particular case of IID sums. Daniels (1954)

obtained the same result by independent means apparently, and termed it the saddlepoint

approximation.

From the point of view of a physicist, the theorem of Gärtner and Ellis is also very

reminiscent of the techniques developed by Boltzmann (1877) and Gibbs (1902), the two

physicists who laid down the foundations of equilibrium statistical mechanics. Boltzmann,

in fact, seems to have anticipated Sanov’s Theorem [Sanov (1961)], around 1877, as he was

working on the equilibrium distribution of states of the perfect gas [see Ellis (1999)].

These historical facts are given here not in an attempt to revise the history of large devi-

ations theory by excluding or marginalizing the role of mathematicians in the development
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of this theory. The fact is that neither Boltzmann nor Gibbs conceived their newly devel-

oped techniques as being part of a systematic mathematical theory which could encompass

not only the probabilistic description of many-body systems, but any stochastic processes at

large. If only for this reason, the two physicists cannot be considered as the true “founding

fathers” of large deviations theory. However, the strong similarity between the techniques

and results of large deviations theory and those of statistical mechanics cannot be thought

of only as a coincidence, as will become clear in the next chapter. Boltzmann and Gibbs

anticipated something, but we must thank the mathematicians for their work at formalizing

completely and independently this “something.”
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Statistical Mechanics as a Large Deviations Theory

The previous chapter was a prelude aimed at introducing the mathematical tools that will

be put to use from this point on to study the physical behavior of systems which are com-

posed of many microscopic “particles” (molecules, spins, etc.). The probabilistic study of

these many-body systems which appear to behave more or less randomly when probed at

the microscopic level, although they seem totally regular at the macroscopic level, has been

initiated by physicists like Boltzmann, Gibbs and Maxwell more than a century ago. From

their works has emerged a theory now referred to as statistical physics or statistical me-

chanics. We shall see in this chapter how such mathematical concepts as a large deviation

principle and a rate function intervene in the very foundations of this theory, and espe-

cially in the construction of the so-called microcanonical and canonical ensembles, the two

main “theoretical devices” of statistical mechanics with which the equilibrium properties

of many-body systems are commonly calculated. An explicit calculation of these properties

for a simple spin system is given in the last section to illustrate the usefulness of these con-

cepts. By the end of this chapter, we hold that the reader should be convinced that statistical

mechanics is, in retrospect, just an application of large deviations theory (see Table 2.1).

2.1. MODELING MANY-BODY SYSTEMS WITH RANDOM VARIABLES

Fundamental Terms and Definitions

To apply large deviations concepts or any other probabilistic concepts for studying physical

many-body systems, we need first to state a number of postulates and definitions whose pur-

pose is (i) to define what the term “many-body systems” means; (ii) establish an interpreta-

tion of the physical variables describing the states of such systems in terms of probabilistic

concepts; and (iii) make precise the conditions (mathematical or physical) under which we

expect a probabilistic analysis of these systems to be meaningful. In order not to unduly

lengthen the list of such postulates and definitions, we take for granted that the reader has

49
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already some knowledge of the basic principles of statistical mechanics and an idea of the

kind of systems for which statistical mechanics can be applied to [see, e.g., Reif (1965), Lan-

dau and Lifshitz (1991) or Balian (1991)]. Taking this knowledge as a fait accompli, the

following few terms then need only be added:

• A many-body system is an assembly of n identical subsystems (e.g., particles, spins,

proteins, etc.) which may be physically interacting or not.

• The joint or collective state of the n subsystems is represented abstractly by a se-

quence of n random variables Xn = (X1, X2, . . . , Xn), where Xi stands for the

state of the ith subsystem.

• In the jargon of statistical physics, a specific outcome xn of Xn, which completely

describes the state of a n-body system at the “microscopic” level, is called a micro-

state. The state space X n = {xn} of all microstates is the n-fold product space of

the one-particle space X = {x}.

• Since the state of a many-body system is modeled as a random variable, an a priori

joint probability measure P (dxn) has to be specified on the set of all joint outcomes

xn = (x1, x2, . . . , xn). The form of P is not arbitrary; in fact, it will be seen in the

next section that P has to be chosen, for physical reasons, to be the uniform measure

P (dxn) =
dxn

|X n|
, (2.1)

where |X n| = |X |n is the volume of X n. Evidently, in order for this measure to

be well defined, we have to assume that X is a bounded state space having a finite

volume |X |.

• The “physics” of an n-body system is described as a whole by its Hamiltonian or

energy function Un(xn). This function models all the possible interactions or de-

pendencies that may exist between the n subsystems. Given Un(xn), we define the

mean energy function un(xn) or mean energy per particle by the ratio un(xn) =
Un(xn)/n.

• The interactions between the subsystems are such as to create a thermodynamic be-

havior of the whole system, i.e., a macroscopic behavior of the whole system which

can be described by having recourse only to a few variables called macrostates. A
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macrostate, as the name suggests, is a macroscopic variable which, contrary to a mi-

crostate, does not provide a complete microscopic description of an n-body system,

but only a “coarse-grained” description of it which uses a much smaller number of

coordinates than the dimension of the microstate space X n. Mathematically, a ma-

crostate is just a function Mn(xn) mapping the space X n of microstates onto some

space M which may be the real line, a vector space, etc.

• The thermodynamic or macroscopic behavior of an n-body system is characterized by

an equilibrium state. The latter is defined operationally as corresponding to the most

probable macrostate(s) value(s) of the system defined with respect to some probability

measure which is yet to be specified.

• In trying to find the most probable values of the macrostates, the limit n → ∞ with

un = Un/n kept fixed will be assumed. Technically, we call this limit the thermody-

namic limit; it entails, in many cases, the continuum limit.

• The equilibrium values of the macrostates enter in the parameterization of a certain

number of thermodynamic functions which are useful for determining many physi-

cal properties of the system at equilibrium.

Physical Interpretation of the Formalism

The physical content of the formalism defined through the above points may be understood

or “visualized” more clearly perhaps if we put it in the context of the most common many-

body system of all: a gas. Typically the number of particles contained in a gas, e.g., the air

filling the room you are in, is very large (∼ 1020-1030), whereas the scale at which these

particles can be “seen” to evolve and interact is very small (∼ 10−8-10−10 m). Because

of the too large number of variables at play, we need obviously to abandon the hope of

describing the physics of the gas by probing its microscopic deterministic evolution. What

we can do, however, is to study the gas at the macroscopic level by abstracting the evolution

of its constituting particles using some stochastic model, and then proceed to do a statistical

analysis of this model to see if any physically realistic properties come out of it.

That such a probabilistic and statistical analysis of the gas system (and, by extension,

any random many-body systems) should work is directly suggested by the following obser-

vations which follow from our analysis of large deviations:

• Random quantities, when combined together, tend to “average out” one another so

as to let order and uniformity emerge from randomness (Law of Large Numbers;
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macroscopic determinism).

• The repeated “measurements” of a random variable, say a macrostate Mn(xn), in-

volving n sub-random variables x1, x2, . . . , xn should tend in the same way to con-

centrate around some limiting “equilibrium” values (macroscopic determinism), de-

spite the fact that the measured sequences of states xn are randomly distributed (mi-

croscopic randomness).

• If the outcomes of the measurements of Mn(xn) are ruled by a large deviation prin-

ciple, then the concentration effect should be “exponentially effective,” just as a mean

sum of random variables concentrates itself exponentially around the limiting value

predicted by the Law of Large numbers. From this point of view, all that should mat-

ter if want to macroscopically describe a many-body system as a whole is to know the

most probable values of the macrostates which are of interest to us.

• The most probable value(s) of a macrostate Mn can presumably be obtained mathe-

matically by finding the minimum (or minima) of a certain rate function.

• Given the exponential concentration property, the most probable value(s) of a ma-

crostateMn should match, with a comfortable degree of confidence, the “laboratory”

value(s) of the physical observable which is abstractly modelled by Mn.

These are grosso modo the basic precepts of equilibrium statistical physics; what remains

to be done now, if we want to apply them to specific physical models, is to show how the

probabilities for the microstates and the macrostates are to be constructed depending on the

nature of the system studied.

Here we shall consider only two classes of systems: either the system studied is closed or

isolated from its environment, in which case its energy is constant, or either the system is

open and exchanges energy with another system which is large enough to be characterized

by a fixed temperature. The first class of systems is modeled at the level of probabilities by the

so-called microcanonical ensemble, whereas the second class is modeled by the canonical

ensemble.

2.2. THE MICROCANONICAL ENSEMBLE

Definition

The fundamental probability distribution known as the microcanonical ensemble has been

introduced by Boltzmann (1877) as a model of closed systems whose energy is kept constant.
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It is anchored physically on the assumption that all microstates xn such that Un(xn) = U ,

whereU is the constant energy of the system, should be thought of as being equally probable

(equiprobability postulate). Thus, what we call the microcanonical ensemble at the level

of the microstates is the probability measure defined by conditioning the uniform prior

P (dxn) =
dxn

|X n|
(2.2)

on the restricted set of all microstates xn ∈ X n having a mean energy un(xn) lying in the

infinitesimal interval [u, u+ du]; in symbols,

P u(dxn) = P (dxn|un ∈ du)

=
P (dxn ∩ {xn : un(xn) ∈ du})

P (un ∈ du)

=


P (dxn)

P (un ∈ du)
if u(xn) ∈ du

0 otherwise,
(2.3)

where

P (un ∈ du) =
∫
{xn:un(xn)∈du}

P (dxn) (2.4)

is the probability that mean energy un lies in the infinitesimal interval du positioned at u.

[Recall that we use the formal notation P (un ∈ du) as a shorthand for P (un ∈ [u, u +
du]).] The quantity P (un ∈ du) entering in the above equations is there to make P u(xn) a

normalized measure:∫
X n

P u(dxn) =
1

P (un ∈ du)

∫
{xn:un(xn)∈du}

P (dxn) = 1. (2.5)

To extend the microcanonical measure P u(dxn) to the level of macrostates, we simply

need at this stage to follow the standard rules of probability theory. For a given macrostate

Mn(xn), for example, we define P u(Mn ∈ dm) to be the conditional probability given by

P u(Mn ∈ dm) = P (Mn ∈ dm|un ∈ du)

=
P ({xn : Mn(xn) ∈ dm} ∩ {xn : un(xn) ∈ du})

P (un ∈ du)
. (2.6)

It is this probability that one has to consider if one wants to find the most probable value(s)

ofMn given that the system for which this macrostate is “measured” has a mean energy held



54 Statistical Mechanics as a Large Deviations Theory

fixed at a value u.

Microcanonical Large Deviations

The theory of large deviations enters in the description of the microcanonical ensemble as

the basic tool for finding the values of Mn which maximize the microcanonical probability

measure P u(Mn ∈ dm). To parallel the case of random mean sums, we should expect

at this point to be able to find the most probable values of Mn by locating the minima

of a given rate function. What we aim to show here is that if a large deviation principle

holds for P (Mn ∈ dm) as well as for P (un ∈ du), and if there exists a contraction of the

macrostate values into the mean energy values, then a large deviation principle also holds for

P u(Mn ∈ dm). Moreover, in this case, the values ofMn which realize the global maximum

of the microcanonical probability P u(Mn ∈ dm) also globally minimize the rate function

of P (Mn ∈ dm) under the constraint that un(xn) = u.

To prove this result, consider the macrostateMn(xn) taking values in the space M , and

suppose that a large deviation principle holds for this macrostate with respect to the a priori

measure P (dxn), namely,

P (Mn ∈ dm) =
∫
{xn:Mn(xn)∈dm}

P (dxn) � ens(m)dm. (2.7)

Note that to conform with the physicists’ usage, we have written the “rate function” s(m)
in the expression of the large deviation probability without a minus sign. The negative rate

function s(m) thus defined is called an entropy function.

Suppose now that the energy per particle un(xn) can be rewritten as a function of the

macrostateMn(xn); that is, suppose that there exists a bounded, continuous function u(m),

which we shall call the energy representation function, that has the property that un(xn) =
u(Mn(xn)) for any microstates xn or, more generally, which is such that

|un(xn)− u(Mn(xn))| → 0 (2.8)

uniformly over all microstates as n → ∞. Given that this function exists, it is readily seen

that the most probable macrostate valuesm ofMn(xn) defined on the microcanonical set of

microstates xn such that un(xn) ∈ du are those which maximize the entropy function s(m)
subject to the constraint u(m) = u. To be sure, let us construct the explicit expression of

the microcanonical measure for Mn. Assuming that P (un ∈ du) satisfies a large deviation
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principle of the form

P (un ∈ du) � ens(u)du, (2.9)

we may write P u(Mn ∈ dm) as follows:

P u(Mn ∈ dm) � e−nIu(m)dm, (2.10)

where

Iu(m) =

{
s(u)− s(m) if u(m) = u

∞ otherwise.
(2.11)

The function Iu(m) has to be nonnegative for any m ∈ M , since it is a rate function.

Thus, we see that the microcanonical probability that Mn(xn) is near m must go to 0

at the exponential decaying rate Iu(m) as n → ∞ unless Iu(m) = 0, in which case

P u(Mn ∈ dm) → O(1) in the limit where n → ∞. Since the minimizers of Iu(m) must

correspond to the constrained maximizers of s(m), by virtue of (2.11), we are naturally led

to define the set E u of microcanonical equilibrium macrostates as the set containing all

these constrained maximizers; in symbols,

E u = {m ∈M : Iu(m) = 0}

= {m ∈M : m maximizes s(m) with u(m) = u}. (2.12)

For later use, the members of E u will be denoted by mu.

Microcanonical Contraction Principle

The definition of the set E u implies a useful variational formula for the function s(u), the

microcanonical entropy function. Indeed, since mu is a global minimizer of the rate func-

tion Iu(m) for a given value u of the mean energy, we must have Iu(mu) = 0, and therefore

s(u) = sup
m:u(m)=u

s(m) = s(mu) (2.13)

by equation (2.11).

The same variational formula for s(u) can also be seen as a consequence of the con-

traction principle presented in Section 1.6. Simply use the representation energy function

as a contraction function to express the integral of (2.4) as an integral over the restricted
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macrostate space {m ∈M : u(m) = u} instead of {xn ∈X n : un(xn) = u}. This yields

P (un ∈ du) =
∫
{m:u(m)∈du}

P (Mn ∈ dm)

�
∫
{m:u(m)∈du}

ens(m)dm. (2.14)

Then use Laplace’s Method to locate the dominating contribution to the integral over m:

P (un ∈ du) � exp

[
n sup
m:u(m)=u

s(m)

]
dm, (2.15)

and take, finally, the thermodynamic limit to obtain

lim
n→∞

1
n

lnP (un ∈ du) = sup
m:u(m)=u

s(m) + lim
n→∞

1
n

ln dm

= sup
m:u(m)=u

s(m). (2.16)

2.3. THE CANONICAL ENSEMBLE

Definition

While the microcanonical ensemble is defined in terms of a fixed value of the mean energy

u, the canonical ensemble is defined in terms of a fixed value of the inverse temperature

β. In the canonical ensemble, the relevant probability measure on X n to consider is the

canonical probability measure or Gibbs measure defined by

Pβ(dxn) =
e−βUn(xn)

Zn(β)
P (dxn) =

e−βnun(xn)

Zn(β)
P (dxn), (2.17)

where

Zn(β) =
∫

X n

e−βnun(xn)P (dxn). (2.18)

(See Reif (1965), Landau and Lifshitz (1991) or Balian (1991) for a derivation of this prob-

ability measure as well as for a discussion of its interpretation.)

Following the terminology introduced in the previous chapter, we call Zn(β) the parti-

tion function of un(xn). From this quantity, we also define the free energy of un(xn) by

the limit

ϕ(β) = lim
n→∞

− 1
n

lnZn(β). (2.19)
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Statistical mechanics Large deviations theory

Large deviations P (un ∈ du) � ens(u) P (An ∈ da) � e−nI(a)

Partition function Zn(β) = E[e−βnun ] Wn(k) = E[eknAn ]

Free energy ϕ(β) = lim
n→∞

− 1
n

lnZn(β)

= inf
u
{βu− s(u)}

λ(k) = lim
n→∞

1
n

lnWn(k)

= sup
a
{ka− I(a)}

Table 2.1: Comparison of the quantities and fundamental mathematical equations of equilibrium
statistical physics and large deviations theory.

Notice that the expressions of Zn(β) and ϕ(β) differ slightly from the expressions of the

partition and free energy functions given in the previous chapter. The difference, as can

be seen, is only a matter of sign convention: physicists prefer to use the −β term in the

exponential function entering in the definition of the partition function, whereas mathe-

maticians use the single k term. This only means of course that Zn(β) = Wn(k = −β).

In a similar way, the “physical” free energy ϕ(β) is defined with an extra minus sign so that

ϕ(β) = −λ(k = −β) (see Table 2.1).

Canonical Large Deviations

As we did in the case of the microcanonical ensemble, we now state the large deviation

principle for the macrostate Mn(xn) with respect to the canonical ensemble, and then use

this principle to define the set of canonical equilibrium macrostates.

For any macrostate value m ∈ M and any microstate xn ∈ X n satisfying Mn(xn) ∈
dm, the continuity of the energy representation function implies that un(xn) is equal or is

close to u(Mn(xn)). Hence, we expect that

Pβ(Mn ∈ dm) =
∫
{xn:Mn(xn)∈dm}

Pβ(dxn)

=
∫
{xn:Mn(xn)∈dm}

e−βnun(xn)

Zn(β)
P (dxn) (2.20)

is equal or is close to

e−βnu(m)

Zn(β)

∫
{xn:Mn(xn)∈dm}

P (dxn) =
e−βnu(m)

Zn(β)
P (Mn ∈ dm). (2.21)
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As a consequence, we can use the large deviation estimate (2.7) for P (Mn ∈ dm) to write

Pβ(Mn ∈ dm) � e−nIβ(m)dm, (2.22)

where

Iβ(m) = βu(m)− s(m)− ϕ(β). (2.23)

This canonical large deviation principle for Mn shows that the most probable ma-

crostate values with respect to Gibbs’ measure Pβ are those which minimize the quantity

βu(m) − s(m) for a fixed value of β. (The free energy function ϕ(β) is only a constant

of normalization.) Accordingly, we define the set Eβ of canonical equilibrium macrostates

associated with a given value β as follows:

Eβ = {m ∈M : Iβ(m) = 0}

= {m ∈M : βu(m)− s(m) is minimized}. (2.24)

As in the case of the microcanonical ensemble, the members of Eβ , which will be denoted

by mβ , have exponentially more probability to be “observed” in the limit where n → ∞
compared to any other macrostate values not contained in this set. This, we recall, is the

precise explanation of the term “equilibrium macrostates.”

Canonical Contraction Principles

One useful property of the canonical minimizers mβ is that they can be used to express the

free energy function ϕ(β) as a function of u(m) and s(m):

ϕ(β) = inf
m
{βu(m)− s(m)} = βu(mβ)− s(mβ). (2.25)

This variational formula for ϕ(β) is called the macrostate representation of the free en-

ergy. As in the case of the microcanonical entropy, we can derive this formula from the

contraction principle: just re-express the integral entering in the definition of Zn(β) not as

an integral over the set X n of microstates, but as an integral over M :

Zn(β) =
∫

M
e−βnu(m)P (Mn ∈ dm). (2.26)
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Then use the large deviation principle for P (Mn ∈ dm) to obtain

Zn(β) �
∫

M
e−n[βu(m)−s(m)]dm.

� exp
(
−n inf

m
{βu(m)− s(m)}

)
, (2.27)

so that

lim
n→∞

− 1
n

lnZn(β) = inf
m
{βu(m)− s(m)}. (2.28)

Using a similar chain of arguments, we can also write

Zn(β) =
∫

U
e−βnuP (un(xn) ∈ du)

�
∫

U
e−n[βu−s(u)]du

� exp
(
−n inf

u
{βu− s(u)}

)
. (2.29)

where U stands for the range of admissible values of the mean energy. The above equations

clearly motivate the fundamental relationship

ϕ(β) = inf
u
{βu− s(u)} (2.30)

which expresses the free energy ϕ(β) as the Legendre-Fenchel transform of the microca-

nonical entropy s(u). We call this formula the thermodynamic representation of ϕ(β).

The difference between this Legendre-Fenchel transform relating ϕ(β) and s(u) and the

Legendre-Fenchel transform obtained in the previous chapter relating λ(k) and I(a) is,

again, only a matter of sign convention (see Table 2.1).

Canonical Equilibrium Mean Energy

The mean energy has the role of a constant in the microcanonical ensemble: it is the pa-

rameter which defines P u. But in the canonical ensemble, the mean energy is a random

variable. The canonical probability measure which governs the outcomes of un is given by

Pβ(un ∈ du) =
e−βnu

Zn(β)
P (un ∈ du). (2.31)
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Given the large deviation principle ruling the outcomes of P (un ∈ du) and the entropy

function s(u) associated with this large deviation principle, we thus find

Pβ(un ∈ du) � e−nIβ(u)du, (2.32)

where

Iβ(u) = βu− s(u)− ϕ(β). (2.33)

This formula for the canonical rate function implies, among other things, that the equi-

librium values of the mean energy in the canonical ensemble, which will be denoted by uβ ,

satisfies the two following differential equations:

∂Iβ(u)
∂u

∣∣∣∣
uβ

= 0,
∂2Iβ(u)
∂u2

∣∣∣∣
uβ

> 0, (2.34)

if Iβ(u) is twice differentiable at u. In terms of the microcanonical entropy, this is equivalent

to

s′(u)
∣∣
uβ

= β, s′′(u)
∣∣
uβ
< 0 (2.35)

if s(u) is twice differentiable at u. Moreover, since Iβ(uβ) = 0 by definition of the canonical

equilibria, we must have

ϕ(β) = βuβ − s(uβ). (2.36)

From this result we can proceed as we have done in Section 1.5 to differentiate the free

energy with respect to β to find that uβ also satisfies

ϕ′(β) = uβ + β
∂uβ
∂β
− s′(u)

∣∣
uβ

∂uβ
∂β

= uβ . (2.37)

That is, the slope value of ϕ at β, if it exists, gives the equilibrium value of the mean energy

realized in the canonical ensemble with inverse temperature β.

2.4. ILLUSTRATIVE EXAMPLE: NONINTERACTING±1 SPINS

To illustrate the many equations derived so far, we consider in this section a simple spin

system which is commonly presented to undergraduate physics students as the simplest mi-

croscopic model of magnetism [see, e.g., Reif (1965) or Balian (1991)]. The model consists

of n noninteracting spins X1, X2, . . . , Xn taking values in the state space X = {−1,+1}.
The “free” nature of the spins simply means that we can write the total energy of the system
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as the sum of the individual energies of the spins which, for simplicity, will be assumed to

be directly proportional to the spin value. Thus,

Un(xn) =
n∑
i=1

xi (2.38)

and

un(xn) =
Un(xn)
n

=
1
n

n∑
i=1

xi. (2.39)

To complete the specification of the model, we set the prior probability on X n to be equal

to P (xn) = 2−n for all microstates xn ∈X n.

We proceed to study the equilibrium properties of this spin model by choosing the em-

pirical vector as the macrostate of interest. The latter is defined once again as

Ln(x) =
# spins x in xn

n
=

1
n

n∑
i=1

δxi,x, (2.40)

where xi is the state of the ith spin in the given microstate xn = (x1, x2, . . . , xn). The

choice of the empirical vector is dictated by the fact that this quantity admits a simple energy

representation given by

u(Ln = l) =
∑
x∈X

xl(x) = l(+1)− l(−1). (2.41)

Moreover, we already know the entropy function associated with the large deviations of Ln.

By Sanov’s Theorem, we indeed have P (Ln ∈ dl) � ens(l)dl with

s(l) = −
∑
x∈X

l(x) ln l(x)− ln 2

= −l(+1) ln l(+1)− l(−1) ln l(−1)− ln 2. (2.42)

These properties ofLn allow us to construct the set E u = {lu} of equilibrium empirical

vectors associated with the mean energy value u by maximizing the entropy measure s(l)
subject to the constraint u(l) = u ∈ [−1, 1]. Fortunately for us, solving this problem does

not actually necessitate the maximization of s(l) since the normalization constraint

l(−1) + l(+1) = 1 (2.43)



62 Statistical Mechanics as a Large Deviations Theory

on the components of the empirical vector reduces the number of independent components

of l to one, while the microcanonical energy constraint

l(+1)− l(−1) = u (2.44)

reduces this number by one more. This leaves us with no indeterminate, and so we find

lu(−1) =
1− u

2
, lu(+1) =

1 + u

2
(2.45)

as the two components of the microcanonical equilibrium empirical vector lu associated

with a given value u of the mean energy (Figure 2.1). From this solution, we calculate the

microcanonical entropy function s(u) by using the contraction formula s(u) = s(lu) which

yields

s(u) = −
(

1− u
2

)
ln
(

1− u
2

)
−
(

1 + u

2

)
ln
(

1 + u

2

)
− ln 2 (2.46)

with u ∈ [−1,+1]. This entropy function is plotted in Figure 2.2.

In the case of the canonical ensemble, the set Eβ = {lβ} of equilibrium empirical vectors

parameterized by the inverse temperature β is found by maximizing the quantity βu(l) −
s(l). Here the maximization of s(l) is necessary, but it is simple enough to be carried out

analytically. The solution explicitly is

lβ(−1) =
eβ

eβ + e−β
, lβ(+1) =

e−β

eβ + e−β
, (2.47)

where β ∈ R (Figure 2.1). Using this result, we find the free energy function ϕ(β) to be

given by

ϕ(β) = βu(lβ)− s(lβ) = − ln coshβ (2.48)

(Figure 2.2). The same result could have been obtained directly had we started with the

definition of this quantity:

ϕ(β) = lim
n→∞

− 1
n

lnZn(β)

= − ln

1
2

∑
x∈{−1,1}

e−βx


= − ln coshβ. (2.49)
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Figure 2.1: (Top left) Derivative of the microcanonical entropy. (Top right) −1 and +1 compo-
nents of the canonical equilibrium empirical vector lβ . (Bottom left)−1 and +1 components of the
microcanonical equilibrium empirical vector lu. The dotted line indicates how the one-to-one cor-
respondence between the microcanonical and canonical equilibrium values of the empirical vector
is to be constructed: pick a microcanonical point lu (i), and find a corresponding canonical point lβ
such that lu = lβ (ii). The value β for which the equality between the two equilibrium macrostates
holds should be such that β = s′(u) (iii).
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Figure 2.2: (a) Microcanonical entropy s(u) for the noninteracting spin problem. (b) Associated
free energy function ϕ(β).

From this expression, we finally find

uβ = ϕ′(β) = − tanhβ (2.50)

as the unique value of the equilibrium mean energy associated with a given value β of the

inverse temperature.

We shall not reflect much on the physical implications of these results; they are, to a

certain extent, “trivial” and can be found in virtually every undergraduate textbooks on

statistical mechanics (see, e.g., the references mentioned in the Notes and Remarks section

found at the end of the chapter). However, there are two subtle issues related to these cal-

culations which are worth addressing in more detail; two issues which lie at the heart of this

thesis, and which are but rarely addressed in textbooks.

The first of them has to do with the calculation of the microcanonical entropy function,

and, more globally, with the applicability of the Gärtner-Ellis Theorem. In this section we

have used the contraction principle applied to s(l) to obtain the expression of s(u), but

we could have just as well calculated the microcanonical entropy by taking the Legendre-

Fenchel transform of the corresponding free energy function ϕ(β). In fact, given the iso-

morphism between the noninteracting spin model and the sum of IID binary random vari-

ables studied in Section 1.4, it is easily verified that the outcome of this transform, withϕ(β)
given as in equation (2.48), coincides with what was found in (2.46). The reason explaining

this coincidence is also already known to us: the free energy ϕ(β) of the noninteracting spin

model is everywhere differentiable, as required by the theorem of Gärtner and Ellis. But

there is a missing piece in this explanation: we do not yet overly understand why we obtain
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the right answer under the conditions stated. More precisely, we have not explained up to

now why the differentiability of ϕ(β) is required to ensure that s(u) equals the Legendre-

Fenchel transform of ϕ(β). Can we in fact imagine physical models which are characterized

microcanonically by entropy functions which do not comply with the Gärtner-Ellis Theo-

rem? This is a very important question that will find its answer in the next chapters.

The second problem raised by the above calculations is, in a sense, more fundamen-

tal than the first as it relates to the compatibility or incompatibility of the equilibrium

macrostates predicted by the microcanonical and the canonical ensembles. Using the so-

lutions for lu and lβ found above, we may easily verify that the set E u of microcanonical

equilibrium macrostates can be put into a one-to-one correspondence with the set Eβ of ca-

nonical equilibrium macrostates. That is, we may verify, using equation (2.50), that lβ = luβ

for all β ∈ R. Conversely, we may invert the very same equation which relates uβ and β to

obtain

β(u) = s′(u) = tanh−1(−u) =
1
2

ln
(

1− u
1 + u

)
, (2.51)

and check that lu = lβ(u) for all u ∈ [−1,+1] (Figure 2.1). We thus see that the microca-

nonical and canonical ensembles actually give equivalent predictions for what regards the

equilibrium value of the empirical vector. Faced with this surprising result, we should evi-

dently ask ourselves if this is just an accident, a coincidence resulting from the choice of the

model. Could it be that E u is always equal to Eβ? or are there any models for which we

may observe that E u 6= Eβ for some values of u or β? This other question will also find its

answer in the next chapters.

SUMMARY OF CHAPTER

• Uniform prior measure:

P (dxn) =
dxn

|X n|
. (2.52)

Here |X n| represents the volume of the n-particle state space X n which is assumed

to be bounded.

• Energy representation function: Function u(m) such that un(xn) = u(Mn(xn)) or

lim
n→∞

|un(xn)− u(Mn(xn))| = 0. (2.53)

• Microcanonical entropy: The microcanonical entropy s(u) is the negative rate func-
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tion associated with the probability measure P (un ∈ du), i.e.,

P (un ∈ du) � ens(u)du. (2.54)

• Macrostate rate function: P (Mn ∈ dm) � ens(m)dm. The function s(m) is the

entropy function (negative rate function) associated with the large deviations of the

macrostate Mn.

• Microcanonical ensemble probability measure: The microcanonical ensemble prop-

erties of a system are defined relatively to the set of all microstates xn having a fixed

values of the mean energy un(xn) = u. At the macrostate level, a microcanonical

probability measure is thus constructed as a conditional probability measure of the

form

P u(Mn ∈ dm) = P (Mn ∈ dm|un ∈ du)

=
P ({xn : Mn ∈ dm} ∩ {xn : un ∈ du})

P (un ∈ du)
. (2.55)

• Microcanonical rate function: If the macrostate Mn and the mean energy function

un(xn) each satisfy a large deviation principle with respect to the uniform prior prob-

ability measure P with entropy functions s(m) and s(u), respectively, then

P u(Mn ∈ dm) � e−nI
u(m)dm

Iu(m) =

{
s(u)− s(m) if u(m) = u

∞ otherwise.
(2.56)

The rate function Iu(m) is called the microcanonical rate function.

• Microcanonical equilibria: The equilibrium, i.e., most probable macrostate values

mu realized in the microcanonical ensemble for a fixed value u of the mean energy

are determined as follows:

E u = {m ∈M : Iu(m) = 0}

= {m ∈M : m maximizes s(m) with u(m) = u}

= {mu}. (2.57)
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• Macrostate representation of the microcanonical entropy:

s(u) = sup
m:u(m)=u

s(m) = s(mu). (2.58)

• Canonical ensemble probability measure: The canonical ensemble is defined at the

level of the microstates xn by the following probability measure:

Pβ(dxn) =
e−βnun(xn)

Zn(β)
P (dxn). (2.59)

The parameter β is called the inverse temperature.

• Partition function:

Zn(β) =
∫

X n

e−βnun(xn)P (dxn). (2.60)

• Free energy function:

ϕ(β) = lim
n→∞

− 1
n

lnZn(β). (2.61)

• Equilibrium value of the mean energy: If ϕ(β) is differentiable at β, then the most

probable value of un(xn) in the canonical ensemble satisfies the equation u = ϕ′(β).

The unique value of mean energy determined by this equation is denoted by uβ .

• Canonical rate function:

Pβ(Mn ∈ dm) � e−nIβ(m)dm

Iβ(m) = βu(m)− s(m)− ϕ(β). (2.62)

• Canonical equilibria:

Eβ = {m ∈M : Iβ(m) = 0}

= {m ∈M : βu(m)− s(m) is minimized}

= {mβ}. (2.63)

• Thermodynamic representation of the free energy:

ϕ(β) = inf
u
{βu− s(u)} = βuβ − s(uβ). (2.64)
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• Macrostate representation of the free energy:

ϕ(β) = inf
m
{βu(m)− s(m)} = βu(mβ)− s(mβ). (2.65)

NOTES AND REMARKS

Further References on Statistical Mechanics

There is a plethora of textbooks on statistical mechanics that can be consulted to complete

the material presented in this chapter. In addition to all the books already mentioned [Reif

(1965), Landau and Lifshitz (1991), Balian (1991)], we may add the following ones: Wan-

nier (1966), Huang (1987), Pathria (1996) and Salinas (2001). In this list, Balian (1991)

stands as a useful source of information covering the historic development of statistical

mechanics starting from the works of Boltzmann (1877), Gibbs (1902) and Einstein [see

Einstein (1987)].

Unfortunately, none of these references treats the microcanonical and canonical ensem-

bles from the point of view of large deviations theory. The use of this theory in connection

with statistical mechanics is, in fact, relatively “contemporary” in comparison with statistical

mechanics itself. The definitive and now classic reference on large deviations and statistical

mechanics is the book by Ellis (1985). Since the content of this book is fairly mathemat-

ical, we suggest that the reader take a look at the review papers by Ellis (1995, 1999) be-

fore embarking on the reading of his book. The more physically-oriented review paper by

Oono (1989) may also be a good entry point in the more mathematically-involved litera-

ture on large deviations. We also suggest the long paper by Lanford (1973), often cited as the

first (mathematical physics) work on large deviations and equilibrium statistical mechanics

as well as the papers by Lehtonen and Nummelin (1990) and LaCour and Schieve (2000)

which all present standard applications of the large deviations formalism in the context of

noninteracting systems.

We mention finally the works of Ellis, Haven and Turkington (2000), and Eyink and

Spohn (1993) for those who would like to learn how to handle the thermodynamic limit in

the most rigorous way (something that we have not done and will not do in this thesis).

A Translation Guide

The following few remarks are meant to complement our presentation of statistical mechan-

ics and its affiliation with large deviations theory.
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• What physicists call the free energy is the quantity βϕ(β), not ϕ(β). In this thesis,

we work mainly with ϕ(β) because this quantity has the convenient property that it

is always concave independently of the sign of β. The quantity βϕ(β), by contrast, is

concave or convex depending on the sign of β (positive or negative, respectively).

• Physicists rarely care about specifying the a priori uniform probability P (dxn) =
dxn/|X n| in the definition of the microcanonical and canonical ensembles because

the term |X n| is only a constant. Their definition of the partition function, which

usually takes the form

Zn(β) =
∫

X n

e−βUn(xn)dxn (2.66)

instead of

Zn(β) =
∫

X n

e−βUn(xn)P (dxn) (2.67)

as used here, reflects this choice.

The reader can verify by him- or herself that the replacement of the normalized mea-

sure dxn/|X n| by the unnormalized (Lebesgue) measure dxn changes absolutely

nothing in the equations defining E u and Eβ . What is “measured” by dxn is the

element of volume occupied by the microstate xn rather than its probability. But

probabilities need not be normalized to 1 in order to be physically meaningful: they

can sum up to any value which means that any choice for P (dxn), as long as it is

proportional to dxn, will lead to the same results for mu and mβ .

• The variational principle behind the definition of the microcanonical ensemble, which

says precisely that the elements of E u maximize the macrostate entropy function s(m)
subject to the energy constraint that u(m) = u, is what physicists call the maximum

entropy principle [Jaynes (1957a, 1957b)]. The version of this principle that we have

given here is the definitive version based on probability theory. In the same vein,

the minimization of βu(m) − s(m) which defines the elements of Eβ is referred to

by physicists as the minimum free energy principle, a misnomer perhaps given that

βu(m)− s(m) does not exactly represent the free energy.
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Equivalence and Nonequivalence of Ensembles:

Thermodynamic Level

We shall try to expound in this chapter the deep mathematical reasons explaining why

the free energy function λ(k) is required to be essentially smooth in the statement of the

Gärtner-Ellis Theorem, and why, concomitantly, ϕ(β) needs to be a smooth function of the

inverse temperature β in order for the microcanonical entropy function s(u) to be express-

ible as the Legendre-Fenchel transform of ϕ(β). Following the approach of the first chapter,

we begin by exploring the problem in bare, abstract mathematical terms to then study the

physical consequences of what was learned from the mathematics. By passing to the phys-

ical world, we shall learn, among other things, that the two thermodynamic descriptions

of statistical mechanical models obtained from the microcanonical and canonical ensem-

bles differ from one another when the microcanonical entropy cannot be expressed as the

Legendre-Fenchel transform of the canonical free energy. In such a case, we say that the two

ensembles are thermodynamically nonequivalent.

3.1. THE MIXED SUM PROBLEM

The mathematical example that we intend to study in this section is due to Ioffe (1993).

It has the interesting property that it involves a mean sum of random variables having a

nonconvex rate function. Let Xn = (X1, X2, . . . , Xn) be a sequence of n independent

and identically distributed (IID) Gaussian random variables having zero mean and unit

variance, and let Y be a binary random variable such that

P (Y = −1) = P (Y = +1) =
1
2
. (3.1)

71
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The mean sum considered by Ioffe is then

An(Xn, Y ) = Y +
1
n

n∑
i=1

Xi. (3.2)

To find the form of the large deviations ruling the outcomes of the random variableAn,

we consider the following decomposition of P (An ∈ da):

P (An ∈ da) =
∑
y=±1

P (An ∈ da|Y = y)P (Y = y). (3.3)

Given what we know about Gaussian mean sums, it is plainly seen that if we fix the value of

Y to−1, then An becomes a Gaussian mean sum centered at the expected value

E[An|Y = −1] =
∫

A
aP (An ∈ da|Y = −1) = −1 (3.4)

so that P (An ∈ da|Y = −1) satisfies a large deviation principle with rate function

I−(a) =
(a+ 1)2

2
. (3.5)

Similarly, for Y = 1, An becomes a Gaussian mean sum centered at the value E[An|Y =
1] = 1, which means that P (An ∈ da|Y = 1) must satisfy a large deviation principle

having a rate function given by

I+(a) =
(a− 1)2

2
. (3.6)

Combining these results in (3.3), we obtain

P (An ∈ da) � 1
2
e−nI−(a)da+

1
2
e−nI+(a)da � e−nI(a)da (3.7)

with

I(a) = min{I−(a), I+(a)} =

{
I−(a) if a < 0
I+(a) if a ≥ 0.

(3.8)

It can be seen from Figure 3.1(a) that the above rate function has, contrary to all the

simple mean sums that we have encountered so far, not one but two minima, and that it

is furthermore not convex. Based on these observations, we should naturally expect that

something wrong will happen if we try to apply the Gärtner-Ellis Theorem to find the rate
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Figure 3.1: (a) (Full line) Nonconvex rate function I(a) for the mixed Gaussian sum problem. (Dot-
ted line) Function I∗∗(a) corresponding to the convex envelope of I(a). (b) (Full line) Free energy
λ(k) of An having a non-differentiable point at k = 0.

function of P (An ∈ da) starting from the free energy ofAn, for we know that this theorem

only yields strictly convex rate function (see Section 1.5). Let us verify that this is indeed

the case. Using the expression of the free energy function for the Gaussian mean sum calcu-

lated in Sections 1.1 and 1.4, we proceed to the calculation of λ(k) for the mixed sum (3.2)

through the following steps:

λ(k) = lim
n→∞

1
n

lnE[enkAn ]

= λGauss(k) + lim
n→∞

1
n

lnE[enkY ]

=
1
2
k2 + lim

n→∞

1
n

ln
enk + e−nk

2

=
1
2
k2 + |k|, k ∈ R. (3.9)

This result is consistent with the fact that λ(k) must be a convex function of k, as well as

with the fact that λ(k) has to be equal to the Legendre-Fenchel transform of I(a), as proved

in Section 1.3. To verify the latter property, simply note that

λ(k) = sup
a
{ka− I(a)}

= sup
a
{ka−min{I−(a), I+(a)}}

= max{λ−(k), λ+(k)}

=

{
λ−(k) if k < 0
λ+(k) if k ≥ 0,

(3.10)
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where

λ−(k) = sup
a
{ka− I−(a)} = −k +

1
2
k2

λ+(k) = sup
a
{ka− I+(a)} = k +

1
2
k2 (3.11)

are the two free energy functions associated with I−(a) and I+(a), respectively. These equa-

tions are illustrated in Figure 3.1(b).

Let us see now what we obtain if we invert the Legendre-Fenchel transform shown in

the display (3.10) in the manner of the Gärtner-Ellis Theorem. Focusing our attention on

the values k for which λ(k) can be differentiated (i.e., k 6= 0), we find the supremum of

ka− λ(k) as we did in Section 1.4 by applying the standard rules of calculus to write

sup
k
{ka− λ(k)} = k(a)a− λ(k(a)), (3.12)

where k(a) is given by solving the differential equation λ′(k) = a. From (3.10), we directly

find k(a)− 1 = a for k(a) < 0 and k(a) + 1 = a for k(a) > 0. We obtain, as as result,

sup
k
{ka− λ(k)} =

{
I−(a) if a < −1
I+(a) if a > 1.

(3.13)

For |a| ≤ 1, we may note that ka ≤ λ(k), and so

sup
k
{ka− λ(k)} = 0. (3.14)

The combination of these two results thus yields

I∗∗(a) = sup
k∈R
{ka− λ(k)} =


I−(a) if a < −1
0 if a ∈ [−1, 1]
I+(a) if a > 1.

(3.15)

And there comes the surprise. This last rate function does not reproduce the true rate func-

tion (3.8) of An that was calculated above. In fact, it can be seen from Figure 3.1(a) that

I∗∗(a) coincides with I(a) only for a ∈ R\(−1, 1); for a ∈ (−1, 1), I∗∗(a) takes on the

constant value 0 while I(a) varies continuously between 0 and 1
2 .
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3.2. PROPERTIES OF LEGENDRE-FENCHEL TRANSFORMS

To understand the origin of the properties of the function I∗∗(a) that was just calculated,

and understand furthermore how these properties compare with those of I(a), we review

in this section a few results pertaining to the theory of Legendre-Fenchel transforms. For a

general and rigorous introduction to these transforms, including all the proofs which will

be omitted here, see Rockafellar (1970).

Definition of Convex Conjugates

The double-star notation used to denote the Legendre-Fenchel transform of λ(k) finds its

meaning in the fact that the Legendre-Fenchel transform is usually denoted by a single star

in the convex analysis literature [see, e.g., Rockafellar (1970)], and the fact that λ(k) is itself

the Legendre-Fenchel transform of the rate function I :

I∗(k) = sup
a
{ka− I(a)} = λ(k). (3.16)

The function I∗(k) = λ(k) is sometimes called the convex conjugate or dual of I(a). By

re-applying the Legendre-Fenchel transform, we thus obtain

I∗∗(a) = (I∗)∗(a)

= sup
k
{ka− I∗(k)}

= sup
k
{ka− λ(k)}. (3.17)

From the expression of I∗(k), we see that I∗∗(a) is also equal to

I∗∗(a) = sup
k

{
ka− sup

b
{kb− I(b)}

}
= sup

k
inf
b
{k(a− b) + I(b)}. (3.18)

Convexification of I(a)

The function I∗∗(a) is always convex on its domain of definition, and equals the minimal

convex function minorizing I(a) for all a, which implies that I(a) ≥ I∗∗(a). It is called,

because of these properties, the convex hull of I(a). When I(a) = I∗∗(a), we say that I(a)
is convex at the value a, whereas when I(a) 6= I∗∗(a), we say that I(a) is nonconvex at

a. We also say that I(a) is strictly convex at a if I(a) = I∗∗(a) and I∗∗(a) is itself strictly
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convex at a in the sense that it is not affine around a. For the mixed sum problem of the

previous section, for example, we see that I(a) is convex for a ∈ R\(−1, 1) and nonconvex

for a ∈ (−1, 1). The function I∗∗(a), for the same problem, is convex everywhere as ex-

pected, but has the particularity of being non-strictly convex over (−1, 1). In this case, we

also say that I∗∗(a) is affine or has an affine part over (−1, 1).

Inversion of the Legendre-Fenchel Transform

The above definitions together with the set of equations (3.17) provide us with a fundamen-

tal criterion for verifying that the rate function associated with a large deviation principle

can be written as the Legendre-Fenchel transform of a free energy function. From (3.17),

we see that the rate function I(a) governing the large deviations of a given random variable

An can be expressed as the Legendre-Fenchel of the free energy function λ(k) of An if and

only if I(a) is globally convex on its domain of definition. More precisely, we have that

I(a) = sup
k
{ka− λ(k)} (3.19)

is a valid equation at An = a if and only if I(a) = I∗∗(a). As a converse, we have then that

I(a) > sup
k
{ka− λ(k)} = I∗∗(a) (3.20)

if and only if I(a) 6= I∗∗(a). That is to say, I(a) cannot be expressed as the Legendre-

Fenchel transform of λ at a when I(a) 6= I∗∗(a).

Convexity of λ(k)

The fact that the graph of I(a) may contain nonconvex branches has no effect on the calcu-

lation of the free energy function λ(k). The latter quantity is an always convex function of

k, as was shown in Section 1.3, which means that the formula

λ(k) = sup
a
{ka− I(a)} = I∗(k) (3.21)

holds no matter what form I(a) has, be it convex or nonconvex. In fact, it can be verified

that λ(k) is not only the Legendre-Fenchel transform of I(a), but also the Legendre-Fenchel

transform of I∗∗(a), as well as any other function having I∗∗(a) as its convex hull. This

motivates further our claim that the Legendre-Fenchel transform is in general a many-to-

one mapping which can be inverted only for a restricted class of functions, namely the class
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Figure 3.2: (a) Generic properties of a nonconvex rate function I (solid line), its convex hull I∗∗

(dotted line), and their associated free energy function λ (b).

of convex functions.

Non-Differentiable Points of λ(k)

The regions of nonconvexity of I(a), if there are any, are indicated at the level of the free

energy function by the existence of points of λ(k) where this function is non-differentiable.

To be more precise, suppose that I(a) is nonconvex over a single contiguous open interval

(al, ah) as in Figure 3.2. (The case of multiple non-overlapping ranges of nonconvexity is

treated similarly.) Then it can be proved that λ(k) must be such that λ′(k) does not exist at

the point kc = I ′(al) = I ′(ah) [Figure 3.2(a)]. The left- and right-derivatives of λ(k) must

exist however, and must be equal to

lim
k↗kc

λ′(k) = λ′(kc − 0) = al (3.22)

and

lim
k↘kc

λ′(k) = λ′(kc + 0) = ah, (3.23)

respectively [Figure 3.2(b)]. The jump in the derivative of λ(k) at kc is thus found to be

equal to

∆a = λ′(kc + 0)− λ′(kc − 0) = ah − al. (3.24)

To understand these equations, let us recall an important result of Chapter 1 (Sec-

tion 1.5) which stated that the slopes values of λ(k) are one-to-one related to the abscissa

values of I(a), while the slopes values of I(a) are one-to-one related to the abscissa values of
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Figure 3.3: Non-involutive character of the Legendre-Fenchel transform (∗-transform). The
Legendre-Fenchel transform of a nonconvex rate function I(a) (left) is the same as the Legendre-
Fenchel transform of its convex hull I∗∗(a) (right). The Legendre-Fenchel transform of the corre-
sponding free energy λ(k) (center) yields the convex hull of I(a).

λ(k). What we have to realize now is that this holds true provided that I(a) is strictly convex,

for if I(a) is not convex over some interval, say again the open interval (al, ah), then more

than one value a can solve the equation I ′(a) = k. In such a case, we see from the above

equations that the Legendre-Fenchel transform acts on I(a) in such a way that it assigns to

λ(kc + 0) and λ(kc − 0) the two slope values corresponding to the two endpoints of the

nonconvexity interval (al, ah). The point kc where λ(k) thus becomes non-differentiable

corresponds, as was claimed above, to the slope of the affine part of I∗∗(a) which stretches

across the two values al and ah. In Figure 3.2, for example, we have λ′(0−) = al and

λ′(0+) = ah due to the fact that I∗∗′(a) = 0 for all a ∈ [al, ah].
The same applies obviously if I(a) is convex on the same interval (al, ah), but in a non-

strict way as is the case for I∗∗(a). This must be so because the free energy λ(k) is at the

same time the Legendre-Fenchel transform of I(a) and of I∗∗(a), i.e., (I)∗ = (I∗∗)∗ = λ

(Figure 3.3). Thus, although a convex rate function I(a) having one or more affine parts

may in theory be expressed as the Legendre-Fenchel transform of a free energy function,

one cannot distinguish, using the sole knowledge of the associated free energy, such a rate

function from any other rate function which would be nonconvex over the parts where I(a)
is affine. This explains why λ(k) is required to be everywhere differentiable in the statement

of the Gärtner-Ellis Theorem: the passage of nonconvex rate functions to non-differentiable

free energies is multi-valued, and cannot, as a result, be inverted.

3.3. EQUIVALENCE AND NONEQUIVALENCE RESULTS

Calculation of s(u)

All the results and comments of the preceding section carry over, with only minor modifica-

tions, to the microcanonical entropy function. The analog of I∗∗(a) for s(u) is the concave
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hull defined by the modified Legendre-Fenchel transform

s∗∗(u) = inf
β
{βu− ϕ(β)}. (3.25)

Since the entropy function s(u) is a negative rate function, we now define s(u) to be concave

at u if s(u) = s∗∗(u), and nonconcave at u otherwise. Furthermore, s(u) is said to be

strictly concave at u if s(u) = s∗∗(u) and if s∗∗(u) is itself strictly concave at u in the sense

that it is locally not affine around u (Figure 3.4).

It follows from these definitions that if s(u) is concave on its domain of definition, then

s(u) and s∗∗(u) must coincide, so that

s(u) = inf
β
{βu− ϕ(β)}. (3.26)

In this situation, we say that there is equivalence of the microcanonical and canonical en-

sembles at the thermodynamic level. We can be more precise in this definition, and say that

the two ensembles are thermodynamically equivalent at the mean energy value u when-

ever s(u) = s∗∗(u) (concave entropy), i.e., whenever the value of s(u) at u is given by the

Legendre-Fenchel transform (3.26). In the case where s(u) = s∗∗(u) and s∗∗(u) is strictly

concave at u, then (3.26) actually reduces to the usual differential form of the Legendre

transform. This is given by

s(u) = β(u)u− ϕ(β(u)), (3.27)

where β(u) is at the same time the unique root of the equation ϕ′(β) = u and the slope

value of s(u), i.e., β(u) = s′(u). Finally, when s(u) 6= s∗∗(u) (nonconcave entropy), we

say that there is thermodynamic nonequivalence of ensembles at u.

Concavity of ϕ(β)

As is the case for λ(k), the non-invertibility of the Legendre-Fenchel transform for non-

concave functions has no effect on the calculation of ϕ(β). The latter quantity is an always

concave function of the inverse temperature, which means that the basic thermodynamic

representation of ϕ(β), given by

ϕ(β) = inf
β
{βu− s(u)}, (3.28)

holds regardless of the form of s(u). As we have just seen, however, s(u) can be expressed

as the Legendre-Fenchel transform of ϕ(β) if and only if s(u) is concave on its domain of
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Figure 3.4: (a) Plot of a typical nonconcave entropy function s(u) together with its concave envelope
s∗∗(u). The shaded area corresponds to the nonconcavity region of s(u). This region determines the
range of mean energy values for which we have thermodynamic nonequivalence of the microcanoni-
cal and canonical ensembles. (b) Corresponding free energy function ϕ(β) obtained by calculating
the Legendre-Fenchel transform of s(u).

definition. In this sense, the microcanonical ensemble can be thought of as being more

fundamental than the canonical ensembles.

Relationship with Canonical First-Order Phase Transitions

The apparent superiority of the microcanonical ensemble over the canonical ensemble does

not prevent us from deriving a criterion based entirely on the canonical ensemble for verify-

ing that the two ensembles are thermodynamically equivalent. Indeed, suppose that ϕ(β) is

differentiable for all β. Then the Gärtner-Ellis Theorem guarantees that, with respect to the

a priori measure P , the energy per particle u(xn) satisfies a large deviation principle with

entropy function s(u) given by the Legendre-Fenchel transform of ϕ(β). Because ϕ(β) is

assumed to be everywhere differentiable, the general theory of these transforms guarantees

that s(u) is strictly concave on its domain of definition. We conclude that if ϕ(β) is ev-

erywhere differentiable, then thermodynamic equivalence of ensembles holds for all admissible

values of the mean energy.

This result can be expressed in more physical terms by saying that the absence of a first-

order phase transition in the canonical ensemble implies that the ensembles are equivalent

at the thermodynamic level. By taking the contrapositive of this statement, we may also say

that concomitant to a range of thermodynamic nonequivalence of ensemble is the presence

of a first-order phase transition in the canonical ensemble. The precise critical value βc
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Figure 3.5: Non-involutive character of the Legendre-Fenchel transform (∗-transform) now illus-
trated at the level of the microcanonical entropy (see Figure 3.3).

of the inverse temperature at which the phase transition appears is determined similarly

as for λ(k) by the properties of the Legendre-Fenchel transform. If s(u) 6= s∗∗(u) for all

u ∈ (ul, uh), for example, then βc must correspond to the slope of the affine part of s∗∗(u)
which is such that

βc = s′(ul) = s′(uh) = s∗∗′(ul) = s∗∗′(uh) (3.29)

(see Figure 3.4). The phase transition is also characterized by a jump of entropy

∆s = s(uh)− s(ul), (3.30)

and a so-called latent heat which is given here by the length of the interval of thermody-

namic nonequivalence:

∆u = uh − ul = ϕ′(βc − 0)− ϕ′(βc + 0). (3.31)

(See Binney et al. (1992) for more information about first-order phase transitions and phase

transitions in general.)

Unfortunately, the occurrence of a first-order phase transition in the canonical ensem-

ble, as defined by the existence of a non-differentiable point of ϕ(β), cannot be taken as a

sufficient condition for concluding that there is thermodynamic nonequivalence of ensem-

bles over some range of mean energy. To be sure, notice that the non-differentiability of

ϕ(β) at some critical inverse temperature βc is related to one of the following situations:

either s(u) is not concave over some interval (ul, uh) or else s(u) is affine with slope βc
over the same range of mean energy values (Figure 3.5). The latter situation, clearly, is not a

situation of ensembles nonequivalence.

We shall revisit the subject of first-order canonical phase transitions and their relation-

ship with nonequivalent ensembles in the next chapter to discuss a few subtle points about
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these transitions which cannot be addressed at this point. These subtleties are related, in

short, to the fact that canonical first-order phase transitions arising from affine parts of

s(u) are, to some extent, of a different nature than those arising from nonconcave parts of

s(u). The difference is not perceptible from the point of view of the free energy because both

“types” of first-order transitions are indistinctly associated with non-differentiable points of

the free energy. But a thorough study of the canonical rate function Iβ(u) will reveal to us

that the equilibrium mean energy uβ does actually behave differently around critical points

depending on whether s(u) has flat or nonconcave parts.

3.4. NEGATIVE HEAT CAPACITIES

It is common in the physics literature (see the many references mentioned at the end of this

chapter) to characterize the microcanonical and canonical ensembles as being nonequiv-

alent whenever the heat capacity, calculated microcanonically as a function of the mean

energy, is found to be negative. At first, the idea of a microcanonical heat capacity is a little

puzzling because this quantity, being defined mathematically as the rate of change of the

equilibrium mean energy for given a change of temperature

ccan(T ) =
du

dT
(3.32)

or as

ccan(β) =
duβ

d(β−1)
= −β2duβ

dβ
(3.33)

in terms of the inverse temperature β = T−1 (kB = 1), involves the very notion of temper-

ature. However, some physicists have had the ingenuity to define a microcanonical analog

of the heat capacity by formally substituting s′(u) for β into equation (3.33), and take the

derivative with respect to u (now interpreted as the mean energy of the microcanonical

ensemble) rather than β so as to obtain

cmicro(u) = −s′(u)2

(
du

ds′(u)

)
= −s′(u)2

(
ds′(u)
du

)−1

= −s′(u)2s′′(u)−1. (3.34)

The assumption that β = s′(u) violates, as will be seen in the next chapter, the fact that

β has no “microcanonical” meaning when s(u) 6= s∗∗(u). But if we take the definitions
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Figure 3.6: Illustration of the fact that
negative values of the microcanonical
heat capacity (dark shaded region) do
not necessarily imply thermodynamic
nonequivalence of ensembles (light
shaded region).

of the two heat capacities above as they are given by equations (3.33) and (3.34), then the

following results can be proved without difficulty:

• We have thermodynamic equivalence of ensembles at u if there exists β such that

ccan(β) = cmicro(u) <∞.

• Conversely, we have thermodynamic nonequivalence of ensembles at u if there exists

no β for which ccan(β) = cmicro(u) <∞.

In terms of the microcanonical specific heat only, we also have the following:

• If cmicro(u) < 0, then we have thermodynamic nonequivalence of ensembles at u.

The proofs of all these results follow simply from the fact that ϕ(β) is always concave,

which means that we must have ϕ′′(β) < 0 for all β and thus ccan(β) > 0 for all β. The

microcanonical entropy needs not be always concave, however, and the presence of a “kink”

in the graph of s′(u) must imply that s′′(u) > 0 for some values of the mean energy, and

thus that cmicro(u) < 0 for these values. In short, the canonical ensemble has no room for

negative heat capacities, so to speak, but the microcanonical ensemble does.
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In closing this section, let us note that the above thermodynamic definitions of nonequiv-

alent ensembles based on the comparison of the microcanonical and canonical heat capaci-

ties cannot be applied at points of first-order phase transitions, either microcanonical or ca-

nonical, because such transitions lead the second derivatives of s(u) and ϕ(β), respectively,

to diverge. Notice also that the occurrence of a negative heat capacity in the microcanoni-

cal ensemble provides only a sufficient condition for characterizing the microcanonical and

canonical ensembles as being thermodynamically nonequivalent, not a necessary condition.

It is not too difficult to find an example of a nonconcave entropy function s(u) for which

we have cmicro(u) > 0 at u, but s∗∗(u) 6= s(u) (see Figure 3.6). Hence, although we may

observe a positive value of the microcanonical heat capacity for some value u of the mean

energy, we may be confronted with a case of thermodynamic nonequivalence of ensembles

at u in the sense that the entropy at u may not be the Legendre-Fenchel transform of the

free energy.

SUMMARY OF CHAPTER

• Legendre-Fenchel inversion result: The application of a Legendre-Fenchel transform

to a free energy function yields, in general, the minimal convex envelope or convex

hull of the associate rate function, not the rate function itself. For the rate function

I(a), as for example, the minimal convex envelope of I(a) is defined as

I∗∗(a) = sup
k
{ka− λ(k)}

= sup
k
{ka− sup

b
{kb− I(b)}}

= sup
k

inf
b
{k(a− b) + I(b)}. (3.35)

Thus I∗∗(a) ≤ I(a) with equality if and only if I(a) is convex at a. In the context of

the microcanonical entropy function, the same holds modulo some changes in sign;

namely, the minimal concave envelope or concave hull of s(u) is defined as

s∗∗(u) = inf
β
{βu− ϕ(β)}

= inf
β
{βu− inf

v
{βv − s(v)}}

= inf
β

sup
v
{β(u− v) + s(v)}. (3.36)

Here we have s∗∗(u) ≥ s(u) with equality if and only if s(u) is concave at u.
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• Thermodynamic equivalence of ensembles at u: The microcanonical and canonical

ensembles are thermodynamically equivalent at the mean energy value u if s∗∗(u) =
s(u), i.e., if s(u) is concave at u. In case of thermodynamic equivalence, the value

of s(u) at u can be computed as the Legendre-Fenchel transform of the free energy

ϕ(β), i.e.,

s(u) = inf
β
{βu− ϕ(β)}. (3.37)

In this case where s(u) is strictly concave at u, then the Legendre-Fenchel transform

actually reduces to the Legendre transform of ϕ(β) given by

s(u) = β(u)u− ϕ(β(u)), (3.38)

where β(u) = s′(u).

• Thermodynamic nonequivalence of ensembles at u: The microcanonical and cano-

nical ensembles are said to be thermodynamically nonequivalent at the mean energy

value u if s∗∗(u) > s(u), i.e., if s(u) is nonconcave at u. In case of thermody-

namic nonequivalence, s(u) cannot be computed as the Legendre-Fenchel transform

of ϕ(β).

• Global thermodynamic equivalence of ensembles and complete differentiability of

the free energy: If the free energy ϕ(β) is everywhere differentiable (absence of first-

order phase transitions), then the function s(u) is everywhere concave on its domain

of definition, which implies that we have equivalence of ensembles for all u. The

converse statement does not hold since entropy functions which are concave but in a

non-strict way are also characterized by non-differentiable free energies.

• Local thermodynamic equivalence of ensembles and local differentiability of the

free energy: If ϕ(β) is differentiable at β, then s(u) = s∗∗(u) for u = uβ , where

uβ = ϕ′(β). (This result was not stated in the text, but it directly follows from the

properties of Legendre transforms; see equation (3.38) above.)

• Negativity of heat capacity: A sufficient but non-necessary condition for having

thermodynamic nonequivalence of ensembles at the mean energy value u is that

s′′(u) > 0. In terms of the microcanonical heat capacity

cmicro(u) = −s′(u)2s′′(u)−1 (3.39)
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and the canonical heat capacity

ccan(β) = −β2ϕ′′(β), (3.40)

this condition translates into the following: the microcanonical and canonical ensem-

bles are thermodynamically nonequivalent at u if cmicro(u) 6= ccan(β) for all β.

SUPPLEMENTARY MATERIAL: MAXWELL’S CONSTRUCTION

A further characterization of the critical inverse temperature βc, which signals the onset

of a first-order phase transition in the canonical ensemble, can be given in terms of the

three solutions of the equation s′(u) = βc. We assume again that s(u) has a single interval

of nonconcavity. In Figure 3.7, the right, ul is the smallest of these solutions and uh the

largest. We denote by um the intermediate solution of s′(u) = βc. Because

s(ul) = s∗∗(ul), s(uh) = s∗∗(uh), (3.41)

and

s∗∗(uh)− s∗∗(ul) = βc(uh − ul), (3.42)

it follows that ∫ uh

ul

[βc − s′(u)] du = βc(uh − ul)− [s(uh)− s(ul)] = 0. (3.43)

Rewriting this integral in terms of um, we see that∫ um

ul

[βc − s′(u)] du =
∫ uh

um

[s′(u)− βc] du = A. (3.44)

This equation expresses the equal-area property of βc, first observed by Maxwell (1875) [see

also Huang (1987)].

NOTES AND REMARKS

References for Thermodynamic Nonequivalence of Ensembles

The idea of thermodynamic nonequivalence of ensembles originally made its way in physics

not as a local concept defined for given values of the mean energy, as presented here, but

as a global concept which applied whenever the graph of the microcanonical entropy s(u)
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Figure 3.7: Maxwell’s equal-area construc-
tion used to determine the value of βc. See
text for explanation.

showed a “kink” or, equivalently, whenever the graph of s′(u) showed a “back-bending”

shape as in Figure 3.7. This approach to the problem of nonequivalent ensembles has

been propounded by a number of people, including Lynden-Bell and Wood (1968), who

were among the first to observe such kinks in the entropy of certain gravitational many-

body systems, and to relate them to negative values of the microcanonical heat capacity (see

Lynden-Bell (1999) for a historical account). Similar theoretical observations have also been

reported in similar contexts by Thirring (1970), Hertel and Thirring (1971), Gross (1997,

2001), and Chavanis and Ispolatov (2002) among others. For examples of lattice-spin sys-

tems displaying negative heat capacities, see Kiessling and Lebowitz (1997), Dauxois et al.

(2000), Ispolatov and Cohen (2000), Antoni et al. (2002), Borges and Tsallis (2002), Barré

et al. (2001), and Barré (2002).

For a recent survey of the subject of thermodynamic nonequivalence of ensembles and

negative heat capacities, the reader is invited to consult Gross (1997, 2001), as well as the

comprehensive collection of papers edited by Dauxois et al. (2002); both sources cover a

wide range of physical models for which nonconcave anomalies of the microcanonical en-

tropy have been observed, and contain much information about the “physics” of these mod-

els which will not be discussed in this thesis.

The reader will probably find it interesting to learn finally that various research groups
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have reported experimental measurements of negative heat capacities in “small” systems;

see Schmidt et al. (2001), and Gobet et al. (2002) for experiments related to the melting of

atom clusters, and D’Agostino and collaborators (2000, 2002) for results related to nuclear

multifragmentation experiments.

Sources for Local Thermodynamic Nonequivalence of Ensembles

The rigorous approach to nonequivalent ensembles presented here, which explicitly focuses

on the properties of Legendre-Fenchel transforms and on the local properties of s(u), is due

for the most part to Ellis et al. (2000) and Eyink and Spohn (1993) [see also Thirring (2002,

Part II: §2.3, 2.4)]. Not all the results of this chapter are taken from these authors, however:

the translation of the condition s(u) 6= s∗∗(u) into an equivalent condition involving the

microcanonical and canonical heat capacities is original to this thesis, as is the realization

that the occurrence of a negative values for cmicro(u) does not provide a necessary crite-

rion for saying that the microcanonical and canonical ensembles are thermodynamically

nonequivalent.

Allusions to Nonequivalent Ensembles and Phase Transitions

The idea that thermodynamic nonequivalent ensembles might be related to first-order phase

transitions in the canonical ensemble seems to have been floating in the minds of physicists

for some time now [see, e.g., Lynden-Bell (1968, 1999), Thirring (1970), and Gross (1997,

2001)]. The equal-area property mentioned above was in fact discovered by Maxwell in the

course of his studies on van der Waal’s equation and the equilibrium coexistence of differ-

ent phases of matter (e.g., liquid-gas phases) which are usually associated with first-order

transitions. It is important to note, however, that in Maxwell’s case, the phase transition

phenomenon is related not to a “back-bending” behavior of the graph of s(u), but to a

“back-bending” behavior of pressure-volume curves; see Huang (1987) and Griffiths (1967).

Concerning the microcanonical and canonical ensembles, most of the mentions found

in the literature which try to relate the nonequivalence of these two ensembles to first-order

phase transitions are vague, when they are explicit, and none of them express the actual

rigorous relationship between the two phenomena which can only emerge by looking at

the properties of Legendre-Fenchel transforms. The idea most recurrently found to explain

first-order phase transitions, basically, is that, since a negative heat capacity system is in-

herently unstable (its gets colder by acquiring energy and gets hotter by giving energy), all

values of the mean energy for which cmicro(u) < 0 must be avoided or “jumped over” by



Notes and Remarks 89

the system when its mean energy is not strictly kept constant as in canonical ensemble; see

Thirring (1970), Lynden-Bell (1999). From the physical point of view, this is a very appeal-

ing explanation, but we have seen in this chapter that it cannot be entirely correct because

the range of mean energy over which the microcanonical and canonical ensembles can be

seen to be thermodynamically nonequivalent is, in general, larger than the interval of mean

energy for which cmicro(u) < 0. We shall see in the next chapter that a more satisfying

reason explaining why there is a phase transition is that all mean energy values u such that

s(u) 6= s∗∗(u) are not realized in the canonical ensemble as equilibrium mean energies.

To close this subsection, we would like to mention the works of Varchenko (1990) and

Aicardi (2001) which take to a higher mathematical level the idea that thermodynamic sin-

gularities (e.g., phase transitions) can be understood by properly studying thermodynamic

functions and their convex or concave hulls.
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4

Equivalence and Nonequivalence of Ensembles:

Macrostate Level

Our aim in this chapter is to show how the thermodynamic nonequivalence of the micro-

canonical and canonical ensembles reflects a deeper level of nonequivalence of these two

ensembles that takes place at the level of the equilibrium values of macrostates. At this level,

the natural questions to consider for comparing the two ensembles are the following. For

every β and every mβ in the set Eβ of canonical equilibrium macrostates, does there exist a

value of u such thatmβ lies in the set E u of microcanonical equilibrium macrostates? Con-

versely, for every u and every mu ∈ E u, does there exist a value of β such that mu ∈ Eβ? In

trying to relate the macrostate level of equivalence and nonequivalence of ensembles with

the thermodynamic level of equivalence and nonequivalence, we may also ask whether there

are thermodynamic conditions expressed in terms of properties of s(u) or ϕ(β) which en-

sure that there is a correspondence or a lack of correspondence between the members of

E u and those of Eβ . In particular, does equivalence of ensembles at the thermodynamic

level implies equivalence of ensembles at the level of equilibrium macrostates? We shall see

that the answers to all these questions depend, lo and behold, on the concavity properties of

s(u).

4.1. PRELIMINARY RESULTS FROM CONVEX ANALYSIS

We begin this chapter with yet another short incursion into the world of mathematics to

acquaint ourselves, this time, with two basic results of convex analysis which will come to

play a crucial role in the many proofs to come. The first of these results states that

s(v) ≤ s(u) + β(v − u) (4.1)

91
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for all v if and only if s(u) = s∗∗(u) and β = s′(u). From a geometric point of view, this

result only states that s(u) is concave at u if and only if there exists a supporting line to the

graph of s(u) at (u, s(u)) which does not go under the graph of s(u); see Figure 4.1(a). The

second result sharpens the first one to cover cases of strict concavity; it states that s(u) is

strictly concave at u if and only if

s(v) < s(u) + β(v − u) (4.2)

for all v 6= u and β = s′(u). That is, s(u) is strictly concave at u if and only if the supporting

line to the graph of s(u) touches this graph only at (u, s(u)); see Figure 4.1(b).

We shall not go through the full, rigorous proofs of these results as they can be found in

many textbooks on convex analysis [see, e.g., Rockafellar (1970)]. The geometrical interpre-

tation of these results depicted in Figure 4.1 conveys, at any rate, a strong enough sense of

their veracity. For instance, it is plainly seen from the plot of Figure 4.1(a) that, in the case

where s(u) is strictly concave at u, the only line passing through the point (u, s(u)) which

does not pass through any other points of the graph of s(u) is the tangent of s(u) which

satisfies the equation

f(v) = s′(u)(v − u) + s(u). (4.3)

As a result, we must have f(v) > s(v) for all v 6= u, as stated in (4.2). If s(u) is non-strictly

concave at u, however, then more than one point will touch the supporting line of s(u) at u

[see the endpoints of the interval delimited by the grey region in Figure 4.1(a)]. Finally, the

plot of Figure 4.1(b) shows that if s(u) is nonconcave at u, i.e., if s(u) 6= s∗∗(u), then no

line can be traced over the graph of s(u) which passes only through the point (u, s(u)).

4.2. REALIZABILITY OF THE CANONICAL EQUILIBRIUM MEAN ENERGY

The first set of equivalence and nonequivalence of ensembles results that we obtain in this

section express the necessary and sufficient conditions which guarantee that a given mean

energy value u is realized (we also say “stabilized”) in the canonical ensemble as an equi-

librium value of the mean energy macrostate un(xn). We shall see from these results that

the canonical ensemble may realize at equilibrium less than the entire range of definition of

un(xn), which is the range of definition of the microcanonical ensemble, and that multiple

values of un(xn) may be realized at once at equilibrium for a given value β of the inverse

temperature. These peculiarities of the canonical ensemble are, not surprisingly, related to

the appearance of discontinuous (first-order) phase transitions in that ensemble.
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Figure 4.1: (a) Concavity point of the microcanonical entropy function s(u) where s(u) = s∗∗(u).
(b) Nonconcavity point where s(u) 6= s∗∗(u).

Stable Mean Energy Values

The mean energy value u is realized as an equilibrium value of the mean energy macrostate

un(xn) in the canonical ensemble at β = s′(u) if and only if s(u) = s∗∗(u) at u. In terms

of the canonical mean energy rate function, this can be expressed equivalently by saying that

Iβ(u) = 0 for β = s′(u) if and only if s(u) = s∗∗(u). The mean energy values realizing the

global minimum of Iβ(u) are denoted, as before, by uβ , and are referred to as stable mean

energy values.

To prove this result, we first prove that s(u) = s∗∗(u) implies Iβ(u) = 0 for β =
s′(u). The assumption that s(u) = s∗∗(u) can be translated into the concavity result of the

previous section as follows:

βu− s(u) ≤ βv − s(v) (4.4)

for all v and for β = s′(u). The above inequality shows that u is a global minimizer of

the quantity βv − s(v) which is just another way to say, as was shown in Section 2.3, that

Iβ(u) = 0. To complete the proof, we proceed to prove the converse result. Assuming that

s(u) 6= s∗∗(u), we obtain

s(u) < s∗∗(u) = inf
γ
{γu− ϕ(γ)} (4.5)

where we have used the definition of the concave hull of s(u). Going a step further, we can

write

s(u) < inf
γ
{γu− ϕ(γ)} ≤ βu− ϕ(β) (4.6)
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Figure 4.2: Form of the canonical rate function Iβ(u) and canonical equilibrium values of the mean
energy for various values of β. (a) Case where s(u) is strictly concave over (ul, uh). (b) Case where
s(u) is non-strictly concave over (ul, uh).

for all β or, equivalently,

βu− s(u) > ϕ(β) (4.7)

for all β. This last inequality, together with the macrostate representation of the free energy

functionϕ(β), show that u cannot be a minimizer of Iβ(u) for any β. We conclude therefore

that the value u is nowhere realized in the canonical ensemble as an equilibrium value of the

mean energy.

To illustrate the connection between the minima and zeros of Iβ(u) and the concavity

points of the microcanonical entropy s(u), we present in Figure 4.2 different plots of Iβ(u)
corresponding to various values of β and two different forms of s(u). The plots on the left

of this figure were obtained using the now well-studied nonconcave entropy function s(u)
displayed in the many figures of the previous chapter (also displayed in Figure 4.1), whereas

those of on the right were obtained by using a non-strictly concave entropy function which

coincides with the concave hull of entropy function used for the plots in (a). Among the
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Figure 4.3: Two “flavors” of first-order or discontinuous canonical phase transitions illustrated at
the level of uβ : (a) normal; (b) degenerate.

many properties of Iβ(u) illustrated by these plots, we see that

• The canonical equilibrium value of the mean energy never enters the region of non-

concavity of s(u), in agreement with the result proved above.

• The mean energy value u is the unique minima of Iβ(u) for β = s′(u) when s(u) is

strictly concave at u.

• In the limit where β ↗ βc, i.e., where β moves to βc from above, uβ = uh while for

β ↘ βc, we have uβ = ul.

• At βc = s′(ul) = s′(uh), the two non-strictly concave endpoints ul and uh of the

nonconcavity interval of s(u) are realized canonically as the equilibrium values of

un(xn).

• For an entropy function having a affine part over the open interval (ul, uh), all mean

energy values u ∈ (ul, uh) are realized canonically as equilibrium values of un(xn)
for βc = s′(ul) = s′(uh).

The last point is important: it shows that when s(u) is affine over some interval with

slope βc, the canonical ensemble at inverse temperature βc does not “skip over” this interval

like it does when s(u) is nonconcave. This does not mean all the same that the β-behavior

of Iβ(u) when s(u) is affine should not be considered as leading to a true first-order phase

transition. The point is that even though the equilibrium value of the mean energy uβ

taken as a function of the inverse temperature does not jump discontinuously at βc when

s(u) is affine, uβ still has an infinite slope at βc (see Figure 4.3). In this sense, we may say

that the phase transition associated with the affine part of s(u) is a degenerate first-order
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transition. Note in fact that from a practical and less mathematical point of view, it is to be

doubted that physicists doing real experiments in laboratories can actually measure a whole

continuum of mean energy value for a perfectly fixed and controlled value of the inverse

temperature. If only for this reason, a definition of first-order phase transitions based on

the presence of an infinite value of ∂uβ/∂β appears to be more sensible than a definition

based only on the presence of a discontinuous point in the graph of uβ versus β. The former

definition includes the latter, in addition to be totally equivalent to the definition based on

the non-differentiable points of ϕ(β).

Metastable and Unstable Nonequivalent Mean Energy Values

We have seen in Section 2.3 that the equilibrium values of the mean energy, uβ , in the

canonical ensemble with inverse temperature β must satisfy the equation

∂Iβ(u)
∂u

= 0 or s′(u) = β, (4.8)

assuming that Iβ(u) or s(u) is once differentiable at u. What we would like to stress now

is that not all the smooth critical points of Iβ(u) determined by the above equations need

to be realized canonically as equilibrium values of the mean energy: some of these critical

points may actually correspond to local minima or local maxima of Iβ(u), in which case

Pβ(un ∈ du) → 0 exponentially fast as n → ∞. To determine the precise nature of these

canonical “non-equilibrium” critical points, we look at the sign of the second u-derivative

of Iβ(u): if ∂2Iβ(u)/∂u2 > 0, u is a minimum of Iβ(u); if ∂2Iβ(u)/∂u2 < 0 is a maximum

of Iβ(u); if ∂2Iβ(u)/∂u2 = 0 or if ∂2Iβ(u)/∂u2 does not exist, the test fails. In terms of

the microcanonical heat capacity, we are thus led to state the following:

• If s(u) 6= s∗∗(u) and cmicro(u) > 0, then u is a metastable critical point of Iβ(u)
for β = s′(u) in the sense that it is a local minima of Iβ(u) for that particular value

of β. Such a point is also called a metastable critical mean energy of the canonical

ensemble.

• If s(u) 6= s∗∗(u) and cmicro(u) < 0, then u is a local maximum of Iβ(u) for β =
s′(u). We call such a point an unstable critical point of Iβ(u) or an unstable critical

mean energy of the canonical ensemble.

To better understand and “visualize” these results, we provide in Figure 4.4 a number of

plots which illustrate in the most complete way how the critical mean energy values satis-

fying the equation s′(u) = β relate to the critical points of Iβ(u) depending on the choice
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of β. Similar plots found in Figure 4.5 also show how the whole picture of critical points

of Iβ(u) changes when we consider entropy functions and canonical rate functions having

corners or cusps, i.e., non-smooth, non-differentiable points which are associated with mi-

crocanonical first-order phase transitions. We leave the reader with the captions of these

figures for the detail of their interpretations.

4.3. EQUIVALENCE AND NONEQUIVALENCE RESULTS FOR GENERAL

MACROSTATES

We now proceed to extend the equivalence and nonequivalence results derived for the mean

energy to general macrostates. As in Chapter 2, we consider macrostates Mn(xn) which

conform to the following hypotheses:

• P (Mn ∈ dm) satisfies a large deviation principle with respect to the uniform prior

probability P . The entropy function quantifying the rate of decay in the large devia-

tion principle is denoted by s(m).

• There exists an energy representation (total) function u(m) mapping the macrostate

space M onto the energy space U either exactly or asymptotically as n→∞.

We recall that, under these assumptions, the equilibrium values of Mn(xn) in the mi-

crocanonical ensemble correspond to those m ∈M which maximize the entropy function

s(m) subject to the constraint that u(m) = u; in symbols,

E u = {m ∈M : s(m) is maximized with u(m) = u} = {mu}. (4.9)

In the canonical ensemble, the equilibria of Mn(xn) are given by minimizing the quantity

βu(m)− s(m) for a given value of β with no constraint at all, so that

Eβ = {m ∈M : βu(m)− s(m) is minimized} = {mβ}. (4.10)

Realizability of Canonical Equilibria

The first result that we want to prove relating the equilibria of the microcanonical ensemble

to those of the canonical ensemble reads in plain words as follows: The canonical equilibrium

values of the macrostate Mn obtained for a given value β of the inverse temperature are always

realized somewhere in the microcanonical ensemble either for a fixed value u of the mean energy

or for multiple values of the mean energy. In more mathematical terms, what we want to prove
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Figure 4.4: (a) (Top) Microcanonical entropy function s(u) together with its concave envelope
s∗∗(u). (Middle) First derivative of s(u) and s∗∗(u). (Bottom) Plot of the microcanonical heat
capacity as a function of the mean energy. The positivity or negativity of this last quantity deter-
mines whether the mean energy value u is a minimum (global: •; local: �) or a maximum (◦)
point of the canonical rate function Iβ(u), respectively. (b) Form of Iβ(u) for different values of β
displayed in plot of s′(u). The shaded areas in all of these plots highlight the region of ensembles
nonequivalence.
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Figure 4.5: Same as in Figure 4.4, but now s(u) has a “corner,” i.e., a point u where s′(u) jumps
discontinuously. The corner of s(u) translates into a corner of Iβ(u) as illustrated in the plots in (b).
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is thus that

Eβ =
⋃

u∈u(Eβ)

E u, (4.11)

where u(Eβ) denotes the set of mean energy values u that can be written as u(m) over all

m ∈ Eβ , i.e., all mean energy values realized canonically.

To prove this result, we first show that

Eβ ⊆
⋃

u∈u(Eβ)

E u. (4.12)

Choose mβ ∈ Eβ and denote the equilibrium value of the mean energy associated with this

canonical equilibrium macrostate value by uβ = u(mβ). Since mβ is by definition a global

minimizer of βu(m)− s(m), we have

βu(mβ)− s(mβ) ≤ βu(m)− s(m) (4.13)

for allm ∈M with equality if and only ifm ∈ Eβ . If we restrict the values ofm in the above

inequality to be such that their associated mean energy is equal to uβ , then the inequality

above reduces to s(mβ) ≥ s(m) for all m such that u(m) = uβ . This shows that, with

respect to the manifold of macrostate values {m ∈M : u(m) = uβ} having a fixed mean

energy value uβ , mβ is a global maximizer of s(m); in other words, mβ ∈ E uβ . From this

result, and the fact that there may be many mean energy values realized in the set Eβ , we

arrive at (4.12).

To prove finally that the set containment (4.12) is actually an equality, let us prove the

opposite containment relationship ⋃
u∈u(Eβ)

E u ⊆ Eβ. (4.14)

Choose muβ ∈ E uβ . By definition of the microcanonical equilibria, muβ maximizes s(m)
subject to the constraint u(m) = uβ , which means in symbols that s(muβ ) ≥ s(m) for all

m such that u(m) = uβ . But we just saw in the previous paragraph that s(mβ) ≥ s(m) for

all macrostate value m such that u(m) = uβ . In order to avoid a contradiction, we must

then have s(mβ) = s(muβ ), and, as a result,

inf
m
{βu(m)− s(m)} = βu(mβ)− s(mβ)

= βu(muβ )− s(muβ ), (4.15)
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thereby proving that muβ ∈ Eβ . Repeating the argument for all uβ ∈ u(Eβ), we arrive at

the claimed result.

It may help in trying to understand this proof to recall that there can be one or more

canonical equilibrium values of the mean energy associated with any given value β of the

inverse temperature (see previous section). In such a case, it is naturally to be expected that

the canonical ensemble may be decomposed into many microcanonical ensembles, each one

realizing a single equilibrium mean energy value of the canonical ensemble. That such an

expectation holds true, and holds furthermore at the level of the equilibrium values of Mn,

is what we just proved.

Full Equivalence of Ensembles

If s(u) is strictly concave at u, then E u = Eβ for β = s′(u). This is again intuitively expected

considering that we have seen in the previous section that if s(u) is strictly concave at u, then

u is the unique equilibrium value of the mean energy realized in the canonical ensemble for

β = s′(u). Yet, since we have provided no detailed proof of this latter result, let us now take

the time to concoct a satisfying proof of the result now in hand.

To begin, let us suppose that s(u) = s∗∗(u). Following the concavity result of Sec-

tion 4.1, this implies that

βu− s(u) ≤ βv − s(v) (4.16)

for all v and β = s′(u). Using the thermodynamic and macrostate representations of ϕ(β)
derived in Chapter 2, we also see that

βu− s(u) ≤ inf
v
{βv − s(v)}

= ϕ(β)

= inf
m
{βu(m)− s(m)}. (4.17)

Now choose mu ∈ E u. By definition of the microcanonical set E u, we must have u(mu) =
u and s(mu) = s(u), and so

βu(mu)− s(mu) ≤ inf
m
{βu(m)− s(m)}. (4.18)

We deduce from this inequality thatmu minimizes βu(m)−s(m), i.e., thatmu ∈ Eβ . Since

mu is an arbitrary element of E u, it follows that E u ⊆ Eβ with β = s′(u). Thus, we have

shown that if s(u) is concave, then E u ⊆ Eβ . The converse of this statement is also true, for
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if we choose mu
β ∈ E u ∩ Eβ , then

βu(mu
β)− s(mu

β) = inf
m
{βu(m)− s(m)} = ϕ(β) (4.19)

as a result of the fact that mu
β ∈ Eβ and

βu(mu
β)− s(mu

β) = βu− s(u) (4.20)

as a result of the fact that mu
β ∈ E u. Combining these two results, we obtain

βu− s(u) = ϕ(β)

= inf
v
{βv − s(v)}

≤ βw − s(w) (4.21)

for all w, as claimed.

We now use this last result to complete the proof that E u = Eβ by proving by contra-

diction that E u cannot be a proper subset of Eβ if s(u) is strictly concave at u. We suppose

as a working hypothesis that E u ⊂ Eβ . This hypothesis together with the result of equation

(4.11), which expresses the realizability of the canonical equilibria, imply that the remaining

part of Eβ not covered by E u must be covered by one or more other microcanonical sets.

That is to say, there must exists u′ 6= u such that E u′ ⊆ Eβ . This implies, as we have just

seen, that s(u) must be concave at u′ so that

s(w) ≤ s(u′) + β(w − u′) (4.22)

for all w. As a specific case of this inequality, let w = u:

s(u) ≤ s(u′) + β(u− u′). (4.23)

And now comes the contradiction: if s(u) is strictly at u, then

s(v) < s(u) + β(v − u). (4.24)

for all v, but if we put v = u′ in the above inequality and insert the result in (4.23), we

obtain

s(u) ≤ s(u′) + β(u− u′)
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< s(u) + β(u′ − u) + β(u− u′)

= s(u), (4.25)

i.e., s(u) < s(u) (!). To avoid this contradicting result, we have no other choice of course

but to conclude that E u = Eβ for β = s′(u), thereby completing the proof. Note that this

proves at the same time that Eβ=s′(u) cannot realize more than one equilibrium value of the

mean energy when s(u) is strictly concave at u. In other words, the set u(Eβ) must be a

singleton set for β = s′(u) when s(u) is strictly concave at u.

Partial Equivalence of Ensembles

The next result is a variation on the theme of concavity: it states that if s(u) is concave at

u but not strictly concave, then E u
( Eβ for β = s′(u). Combining this result with the

previous, we thus have that thermodynamic equivalence of ensembles at u implies either

full or partial equivalence of ensembles at the level of the equilibrium macrostates for that

particular value of the mean energy.

To prove the strict containment of E u in Eβ=s′(u), we simply need to use an intermediate

result derived in the previous proof which stated that s(u) is concave at u if and only if

E u ⊆ Eβ where β = s′(u). This result applies here because s(u) is assumed to be concave,

though in a non-strict way. As a result, we must have

s(v) ≤ s(u) + β(v − u) (4.26)

for all v and β = s′(u) as well as E u ⊆ Eβ=s′(u). Now, since s(u) is non-strictly concave at

u, there must be another point of s different from (u, s(u)) which touches the supporting

line of s(u); that is, there must exists u′ 6= u such that

s(u′) = s(u) + β(u′ − u). (4.27)

The combination of (4.26) and (4.27) thus yields

s(v) ≤ s(u) + β(v − u) = s(u′) + β(v − u′) (4.28)

for all v. This inequality only demonstrates that s(u′) is concave at u′, which means that we

must have E u′ ⊆ Eβ . Since u′ 6= u, we finally conclude that E u must be but a proper subset

of Eβ=s′(u) since it is not the only set contained in Eβ=s′(u). This is nothing unexpected

considering that we have seen before that many values of the mean energy minimize the
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canonical rate function Iβ(u) for β = s′(u) when s(u) is non-strictly concave at u.

Nonequivalence of Ensembles

The final case that we have to consider to complete our comparison of the microcanonical

and canonical sets of equilibrium macrostates is the case of a nonconcave entropy. For

this case, the relationship between E u and Eβ may directly be guessed from our previous

observation that u is nowhere realized in the canonical ensemble as an equilibrium value

of the mean energy when s(u) is nonconcave. Consequently, if s(u) is nonconcave at u, we

should have E u ∩ Eβ = ∅ for all β.

Let us prove that is indeed a correct result. Assuming that s(u) is nonconcave at u, we

must have

s(u) < s∗∗(u) = inf
γ
{γu− ϕ(γ)} ≤ βu− ϕ(β) (4.29)

for all β, as already stated in (4.5) and (4.6). Now, choose mu ∈ E u and any β. Since

u(mu) = u and s(mu) = s(u), it follows from the above inequality that

βu(mu)− s(mu) > ϕ(β) = inf
m
{βu(m)− s(m)}. (4.30)

This shows that mu is not a minimizer of βu(m) − s(m), and thus that mu /∈ Eβ . Since

mu is an arbitrary element of E u and β is arbitrary, we conclude that E u ∩ Eβ = ∅ for all

β. Thus, if there is thermodynamic nonequivalence of ensembles for some value of u, then the

microcanonical equilibrium macrostates corresponding to that u are nowhere realized within

the canonical ensemble.

4.4. TWO REPRESENTATIONS OF THE MICROCANONICAL ENTROPY

Leyvraz and Ruffo (2002) have proposed two different macrostate representations of the mi-

crocanonical entropy function which illustrate a subtlety involved in the calculation of this

function when the microcanonical and canonical ensembles are nonequivalent. Although

their work does not appeal directly to the formalism of large deviations [it basically exploits

the properties of a steepest descent approximation of an integral leading to s(u)], it is easy

at this point of our study to trace a path leading to their results which uses nothing more

than the concepts and quantities that we have defined in this thesis.

The basic result at play, once again, is the basic relationship ϕ(β) = s∗(β) which ex-

presses the free energy function ϕ(β) as the Legendre-Fenchel transform of the microca-

nonical entropy function s(u). We have seen in the previous chapter that this relationship
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cannot be inverted to express s(u) as the Legendre-Fenchel transform of ϕ(β) when s(u)
is nonconcave, and that what the Legendre-Fenchel transform of ϕ(β) yields in this case is

the concave hull of s(u), not s(u) itself. Thus, if we attempt to apply the Legendre-Fenchel

transform to the basic macrostate representation of ϕ(β), as in

inf
β
{βu− ϕ(β)} = inf

β
{βu− inf

m
{βu(m)− s(m)}, (4.31)

then what is obtained, in general, is

s∗∗(u) = inf
β

sup
m
{β[u− u(m)] + s(m)}. (4.32)

Only in the case where s(u) is concave at u is this formula a valid macrostate representation

formula for calculating s(u).

Let us see now what happens if we interchange the order of the infimum and supremum

operators above. Taking first the inf over β before the sup over m, we get

inf
β
{β[u− u(m)] + s(m)} =

{
−∞ if u(m) 6= u

0 + s(m) if u(m) = u.
(4.33)

Next, we evaluate the sup over the macrostate values m to obtain

sup
m

inf
β
{β[u− u(m)] + s(m)} = sup

m

{
−∞ if u(m) 6= u

0 + s(m) if u(m) = u

}
= sup

m:u(m)=u
s(m)

= s(u) (4.34)

using the thermodynamic representation formula of s(u) for the last line. What results from

these few lines of calculations is a new representation formula for s(u):

s(u) = sup
m

inf
β
{β[u− u(m)] + s(m)} (4.35)

which holds true regardless of the form of s(u). The asymmetry between equations (4.32)

and (4.35) is on its own quite interesting, and definitively offers a new perspective on the

phenomenon of nonequivalent ensembles. However, it must be noted that the above equa-

tion is not very useful for practical calculations because the infimum over β accounts for the

energy constraint u(m) = u in a trivial manner.
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4.5. CONJECTURE ABOUT NONEQUIVALENT MACROSTATES

We end this chapter on an open note by formulating a conjecture concerning equilibrium

macrostates which are realized at equilibrium in the microcanonical ensemble but not in

the canonical ensemble.

We have seen in Section 4.2 that some of the mean energy values u satisfying the dif-

ferential equation β = s′(u) are not realized in the canonical equilibrium because they

correspond to local minima or maxima of the canonical rate function Iβ(u) rather than to

global minima of this quantity. We have also seen, in this context, that the precise nature of

these metastable or unstable mean energies, as we called them, can be assessed by looking

at the sign of the microcanonical heat capacity cmicro(u). The question that we would like

to address in this last section is whether something similar holds for general macrostates,

namely: could it be that the nonequivalent microcanonical equilibrium macrostates, de-

fined mathematically as those mu ∈ E u such that mu /∈ Eβ for all β, are not realized

canonically because such macrostates correspond to local maxima of Iβ(m) or to local min-

ima (or saddle-points?) of this function depending on the value of cmicro(u)? As an answer

to this question, we conjecture the following two points:

• If mu /∈ Eβ for all β and cmicro(u) > 0, then mu is a metastable macrostate of the

canonical ensemble, i.e., it is a local but not global minimum of Iβ(m). Without

resorting to the microcanonical heat capacity, we may say more generally that mu is

metastable if u itself is metastable with respect to Iβ(u).

• If mu /∈ Eβ for all β and cmicro(u) < 0, then mu is a saddle point of the canonical

rate function Iβ(m). More generally, mu is a saddle point of the canonical ensemble

whenever u is a local maximum of Iβ(u).

We do not have at this stage a satisfying proof of the above results, but we are tempted

to think that they are valid for a wide range of statistical mechanical models which basically

satisfy a large deviation principle with rate function s(m) and which have an energy rep-

resentation function. (These are the two working hypotheses of this chapter.) To support

our claim, we mention the many hints which have suggested to us the very answer presented

above. First, we know from the theory of Lagrange multipliers that the microcanonical crit-

ical points of s(m) constrained by the condition u(m) = u must necessarily correspond to

extremal points of the quantity βu(m)−s(m) and, by extension, of Iβ(m). Trying to relate

the nonequivalent macrostate values mu to the critical points of the “canonical” quantity

βu(m)− s(m) is thus a sensible idea to begin with. Second, we know that the microcano-



Summary of Chapter 107

nical macrostatesmu globally maximize s(m) on the manifold of macrostate valuesm such

that u(m) = u (see Section 4.3). On this manifold, the quantity βu(m) − s(m) is thus

globally minimized by mu and equals

βu(mu)− s(mu) = βu− s(u). (4.36)

At this point, it seems that our conjecture follows if only we can ascertain the stability ofmu

against variations of the mean energy. This, we anticipate, should be determined by looking

at the stability of u with respect to the quantity βu − s(u) (see Section 4.2). Work aimed

at consolidating these pieces of information into a rigorous proof is ongoing; see also the

notes of this chapter for further hints.

SUMMARY OF CHAPTER

• Concave function: The function s(u) is concave at u if and only if

s(v) ≤ s(u) + β(v − u) (4.37)

for all v with β = s′(u). The same function s(u) is strictly concave at u if and only if

s(v) < s(u) + β(v − u) (4.38)

for all v 6= u with β = s′(u).

• Realizability of the canonical equilibrium mean energy: If s(u) is concave at u, then

u is realized in the canonical ensemble as an equilibrium value of the mean energy for

β = s′(u), i.e., uβ=s′(u) = u. In the case where s(u) is strictly concave at u, uβ = u

is the unique value of the equilibrium value of the mean energy at β = s′(u).

• Non-realizability of the canonical equilibrium mean energy: If s(u) is nonconcave

at u, then uβ 6= u for all β. That is to say that u is nowhere realized in the canonical

ensemble as an equilibrium value of the mean energy.

• Realizability of canonical equilibrium macrostates: Let β be given. Then

Eβ =
⋃

u∈u(Eβ)

E u, (4.39)

where u(Eβ) stands for the set of all mean energy values u that can be written as u(m)
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for some m ∈ Eβ .

• Full macrostate equivalence of ensembles: If s(u) is strictly concave at u, then there

exists a value of β equal to s′(u) such E u = Eβ .

• Partial macrostate equivalence of ensembles: If s(u) is concave at u but in a non-

strict fashion, then E u
( Eβ for β = s′(u) and E u 6= Eβ for all other values of

β.

• Macrostate nonequivalence of ensemble: If s(u) is nonconcave at u, then E u∩Eβ =
∅ for all β.

• First-order canonical phase transitions: There is macrostate nonequivalence of en-

sembles over the interval (ul, uh) of mean energy if and only if the canonical equi-

librium mean energy value uβ , taken as a function of β, jumps discontinuously at

βc = s′(ul) = s′(uh). There is macrostate nonequivalence of ensembles or partial

equivalence of ensembles if uβ has an infinite slope at the same critical inverse tem-

perature βc. (These results follow by combining the results of Sections 4.2 and 4.3.)

• Alternative macrostate representation of the entropy: The concave hull s∗∗(u) of

the microcanonical entropy function s(u) satisfies the following macrostate repre-

sentation formula:

s∗∗(u) = inf
β

sup
m
{β[u− u(m)] + s(m)}. (4.40)

Interchanging the inf and sup in this formula yields a formula for s(u):

s(u) = sup
m

inf
β
{β[u− u(m)] + s(m)}. (4.41)

NOTES AND REMARKS

Misconceptions about Microcanonical and Canonical Ensembles Being Equivalent

The prevalent opinion that was forged over the years about the nonequivalence of ensembles

problem is, as was mentioned in the introductory chapter, that the microcanonical and

canonical ensembles always give equivalent descriptions of statistical mechanical models

in the thermodynamic limit, no matter what model is considered. The following argument,

found in the classic text of Landau and Lifshitz (1991, §29), is representative of this opinion:
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The possibility of applying the Gibbs distribution ... to closed systems is also

seen from the fact that this distribution hardly differs from the microcanonical

distribution, while being very much more convenient for practical calculations.

For the microcanonical distribution is, roughly speaking, equivalent to regard-

ing as equally probable all microstates of the body which correspond to a given

value of its energy. The canonical distribution is “spread” over a certain range

of energy values, but the width of this range (of the order of the mean fluctua-

tion of the energy) is negligible for a macroscopic body.

Other similar arguments, which also concentrate on the negligibility of energy fluctu-

ations in thermodynamic limit of the canonical ensemble, can be found in several popular

textbooks on statistical mechanics; see, e.g., Huang (1987), Reif (1965, §6.7) and Balian

(1991). One in particular which appears to us as being quite convincing (at first) can be

found in Reif (1965, §6.7); it reads:

If a macroscopic systemA is in contact with a heat reservoir, the relative fluctu-

ations in the energy ofA are exceedingly small. Suppose now thatA is removed

from contact with the heat reservoir and is thermally insulated; then its total

energy cannot change at all. But the distinction between this situation and the

previous one is so small that it is really utterly irrelevant for most purposes; in

particular, the mean values of all physical quantities (e.g., of the mean pressure

or the mean magnetic moment of A) remain quite unaffected. Hence it makes

no difference whether these mean values are calculated by considering the sys-

tem to be isolated so that it has equal probability of being in any one of its states

of accurately specified fixed energy, or by considering it to be in contact with

a heat reservoir so that it is distributed over all its states in accordance with a

canonical distribution.

We see now why this sort of argument must fall short in general: the range where the mean

energy macrostate un is probabilistically seen to converge in the thermodynamic limit of the

canonical ensemble does not necessarily coincide with the range of definition of un. The two

ranges of mean energy do not coincide precisely when the microcanonical and canonical are

nonequivalent (either thermodynamically or at the level of macrostates).
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Sources on Macrostate Nonequivalence of Ensembles

The prehistory of macrostate nonequivalence of ensembles starts with Lax (1955) [see also

Yan and Wannier (1965), and Wannier (1966, p. 67)] who noted that expected values cal-

culated in the microcanonical ensemble were not always identical to similar expected values

calculated in the canonical ensemble. Other works on the subject were subsequently pub-

lished only much later in time by Eyink and Spohn (1993), Lewis et al. (1994a), Kiessling

and Lebowitz (1997), Antoni et al. (2002) as well as by Ellis, Haven and Turkington (2000,

2002).

Our primary source for the material presented in this chapter was Ellis et al. (2000), al-

though our presentation of this material differs greatly from the one found in this reference.

We have tried here to put more in evidence the conditions needed for the mean energy value

u to be realized at equilibrium in the canonical ensemble, in addition to stress the physical

role played by the mean energy for determining the many relationships between the micro-

canonical and canonical sets of equilibrium macrostates. (In short, we have tried to put

“physical flesh” on the many abstract mathematical results devised by Ellis and collabora-

tors.) The proofs of these relationships given here are also much simplified compared to

those found in Ellis et al. (2000). They are so basically because we considered in this chapter

only mean energy values u lying in the interior of the domain of definition of s(u), and

assumed that s(u) is differentiable at all such u. Furthermore, we did not find necessary to

prove the existence of the thermodynamic limit. The reader is referred to Ellis et al. (2000)

for complete proofs of more general results which hold under weaker assumptions, and for

a rigorous mathematical treatment of the thermodynamic limit.

Here now are some remarks about the material presented in this chapter which is not to

be found in the work of Ellis and collaborators.

The sup-inf representation formula for s(u) is due to Leyvraz and Ruffo (2002), as

was already mentioned. It can also be found in print in Oono (1989, p. 173) who did not

consider, however, the interchangeability of the sup and inf operators and its consequences

for the equivalence or nonequivalence of the microcanonical and canonical ensembles.

The study of the behavior of the canonical rate function Iβ(u) in relation to the noncon-

cavity regions and flat parts of microcanonical entropy s(u) is original to this thesis, as is the

connection of this behavior with first-order phase transition (both normal and degenerate);

see next subsection.

Finally, to satisfy the examiners of this thesis, the author would like to add that the con-

jecture about the nonequivalent microcanonical macrostates, stated in Section 4.5, is his
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own personal invention which came to him while working on the numerical calculations

reported in the next chapter. It can be found in the paper written by the author in collab-

oration with Richard S. Ellis and Bruce Turkington which report on these calculations [see

Ellis et al. (2003)]. Nonequivalent macrostates having the property of being saddlepoints or

local minima of Iβ(m) were also reported recently by Antoni et al. (2002) for a long-range

Hamiltonian model different than the BEG model.

More Remarks on Nonequivalent Ensembles and Phase Transitions

The results relating the nonequivalence of the microcanonical and canonical at the level

of the mean energy with first-order canonical phase transitions are an important original

contribution of this thesis. To the best of the author’s knowledge, the only references men-

tioning something related to these results are works by Chomaz et al. (2001), Gulminelli

and Chomaz (2002), and Schmidt et al. (2001) which discuss the bimodality (i.e., double

peak shape) of the canonical energy probability measure Pβ(u) in connection with first-

order phase transitions and the nonconcave regions of s(u). It should be noted, however,

that the treatment of the phenomenon of nonequivalent ensembles offered by these authors

is rather incomplete as it does not appeal to the properties of the Legendre-Fenchel trans-

forms. They seem also not to have anticipated the role of entropy functions having affine

parts in degenerate first-order canonical phase transitions. The appearance of this type of

phase transitions constitutes an important subtlety of the theory of nonequivalent ensem-

bles which is reported here for the first time.

Let us remark also that there exist many works in the physics literature which discuss

various criteria for establishing the appearance of first-order phase transitions in finite-

size systems based on the bimodal shape of Pβ(u) and its n-dependent behavior [see, e.g.,

Binder and Landau (1984), Challa et al. (1986), Borgs and Kotecký (1990), Lee and Koster-

litz (1991), Borgs and Janke (1992), and Borgs and Kotecký (1992)]. However, none of these

papers tie the subject of the bimodality of Pβ(u) with the nonconcave points of s(u), and,

consequently, with nonequivalent microcanonical and canonical ensembles.

Another Conception of Equivalent Ensembles

Some authors use the term “equivalence of ensembles” in a different sense than the one stud-

ied in these pages. What they have in mind is to prove the equivalence of the microcanonical

and canonical ensembles at the level of the probability distributions of single particles, that
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is mathematically to prove conditional limit results of the form

P u(dxi) = P (dxi|un(xn) ∈ du) n→∞−→ Pβ(dxi), (4.42)

where xi refers to the state of the ith “particle” in the joint state xn. (The convergence in

the limit is “in probability”.) For examples of such results, see van Campenhout and Cover

(1981), Cover and Thomas (1991, §12.6), Stroock and Zeitouni (1991), Lewis et al. (1994a),

Lewis et al. (1994b) and Lewis et al. (1995).

A Canonical Entropy?

Leyvraz and Ruffo (2002), in relation to the inf-sup and sup-inf macrostate representations

of s(u), refer to s∗∗(u) as a canonical entropy [see also Gross (1997)]. We would like to

point out that this terminology is somewhat misleading because the mean energy values

such s(u) 6= s∗∗(u) are not represented in the canonical ensemble. Thus, s∗∗(u) actually

contains more information than what the canonical ensemble is able to provide. A more

acceptable definition of a canonical entropy, in the author’s opinion, is s(β) = s(mβ) [see

Ellis (1985, p. 77)]. From this definition, the following result is easily proved: if mβ ∈ E uβ

for some uβ , then s(β) = s(uβ).
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Illustrative Physical Examples

We study in this chapter two spin models which provide a clear illustration of the theory of

nonequivalent ensembles that we have developed in the two last chapters. The two models

are purposely simple; what we aim at is not to discuss their relevance as physical models,

but to illustrate the equivalence or nonequivalence of the microcanonical and canonical

ensemble in the most direct and understandable way possible.

5.1. THE HALF-BLOCKED SPIN MODEL

After having studied the mixed sum problem of Section 3.1, it is but a small task to de-

vise a simple physical model which has a nonconcave entropy: just reconsider the mixed

mean sum in question, and imagine that each of the random variables entering in that sum

represents a spin variable or a group of spin variables. On the first hand, think of the n IID

random variables involved in the mean sum (3.2) as representing n completely uncorrelated

(independent) spinsX1, X2, . . . , Xn (Figure 5.1) whose mean energy is given, as in the free

spin problem (Section 2.4), by

un,X(Xn) =
1
n

n∑
i=1

Xi. (5.1)

On the other hand, think of the Y random variable entering in (3.2) as a block-spin random

variable which models the combined effect of n completely correlated spins Y1, Y2, . . . , Yn

(Figure 5.1) taking the same value in the set X = {−1,+1}, so that

un,Y (Y n) =
1
n

n∑
i=1

Yi = Y. (5.2)

113
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↑ ↓ · · · ↑ ↑ ↑ . . . ↑
X1 X2 Xn Y1 Y2 Yn

Figure 5.1: Half-block spin model: n spins
out of the 2n spins are non-interacting (un-
correlated spins), while the remaining n spins
take on the same value (completely correlated
spins).

The combination of these two functions yields the total mean energy of the 2n-spin system

un(Y n, Xn) = un(Y,Xn) = Y +
1
n

n∑
i=1

Xi (5.3)

which has, as wanted, the form of the mean sum involved in the mixed sum problem. [Note:

We have divided the total energy of the system by the factor n rather than by 2n in order not

to carry a useless 2 in the mean energy function and in the calculations to come.]

At this point we straightforwardly apply all the techniques used before to study the

mixed sum problem and the free spin model to find the microcanonical and canonical prop-

erties of the present “half-block” spin model. The microcanonical entropy, to begin with,

may be calculated using a formula similar to equation (3.3) for P (un ∈ du). In the present

case, it yields:

s(u) =

{
s0(u+ 1) if u ∈ [−2, 0]
s0(u− 1) if u ∈ (0, 2],

(5.4)

where

s0(u) = −
(

1− u
2

)
ln
(

1− u
2

)
−
(

1 + u

2

)
ln
(

1 + u

2

)
− ln 2 (5.5)

is the entropy function associated with n independent spin (see Section 2.4). We next cal-

culate the canonical free energy ϕ(β) as was done before by separating the effect of the Y

and Xn terms in the mean sum un(Y,Xn). The Y term was already studied in Section 3.1,

and leads to

ϕY (β) = −|β|, (5.6)

while the Xn term, treated in Section 2.4, was found to lead to

ϕXn(β) = − ln coshβ. (5.7)

The free energy being additive for independent random variables, we thus find

ϕ(β) = ϕY (β) + ϕXn(β) = − ln coshβ − |β|. (5.8)
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Figure 5.2: Nonconcave microcanonical entropy s(u) (a) and free energy function ϕ(β) (b) for
the half-block spin problem. The shaded zone in the plot of s(u) corresponds to the region of
thermodynamic nonequivalence of ensembles where s(u) 6= s∗∗(u).

To be able to compare the microcanonical and canonical ensembles, we finally calculate the

concave hull of s(u). No calculation is required to find this function as the graph of s(u)
shown in Figure 5.2 directly yields the answer:

s∗∗(u) =


s0(u+ 1) if u ∈ [−2,−1)
0 if u ∈ [−1, 1]
s0(u− 1) if u ∈ (1, 2].

(5.9)

From these results, we see that the microcanonical and canonical ensembles are thermo-

dynamically nonequivalent for all u ∈ (ul, uh) = (−1, 1) since over this interval of mean

energy s(u) 6= s∗∗(u) and thus

s(u) 6= inf
β
{βu− ϕ(β)}. (5.10)

Following the general results derived in the last chapter, we expect accordingly to have

nonequivalent microcanonical and canonical ensembles at the statistical level of this model,

i.e., at the level of the vector Mn = (Y, Ln) containing the value of the block spin vari-

able and the empirical vector or statistical distribution Ln = l of the n uncorrelated spins.

To verify explicitly the nonequivalence of the two ensembles, we calculate the equilibrium

values of (Y, Ln) using

u(Y = y, Ln = l) = y +
∑
x=±1

xl(x) (5.11)
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for the energy representation and

s(y, l) = s(l) = −
∑
x=±1

l(x) ln l(x) + ln 2 (5.12)

for the macrostate entropy function. The form of this last function may be understood by

noting that

P (Y = y, Ln = l) = P (Y = y)P (Ln = l), (5.13)

and that P (Y = y) does not scale exponentially with n while P (Ln = l) does (recall

Sanov’s Theorem), so that

P (Y = y, Ln = l) � ens(l). (5.14)

In the microcanonical ensemble, the mean energy constraint u(y, l) = u together with

the normalization constraint imposed on the empirical vector directly yield, as was the case

in Section 2.4, the equilibrium values (yu, lu) without any need to maximize the entropy.

The solution is

lu(−1) =

{
−u/2 if u ∈ [−2, 0)
(2− u)/2 if u ∈ (0, 2]

lu(+1) =

{
(2− u)/2 if u ∈ [−2, 0)
u/2 if u ∈ (0, 2]

yu =

{
−1 if u ∈ [−2, 0)
+1 if u ∈ (0, 2]

(5.15)

for u ∈ [−2, 2]\{0}. For u = 0, we find the following special degenerate solution:

(yu, lu(−1), lu(+1)) = (1, 1, 0)

(yu, lu(−1), lu(+1)) = (−1, 0, 1). (5.16)

In the canonical ensemble, the equilibrium solutions (yβ, lβ) are found similarly as in

Section 2.4 by minimizing once again the quantity βu(y, l) − s(l). In the present case, we

need to take proper care of the fact that s(l) does not involve the value of the block spin

variable. But this does not make altogether the problem less tractable analytically. In fact,

except for the added variable Y , the solution is the same as for the simple non-interacting
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spin model:

lβ(−1) =
eβ

eβ + e−β
, lβ(+1) =

e−β

eβ + e−β
,

yβ =

{
−1 if β > 0
+1 if β < 0.

(5.17)

At β = 0, we also have a degenerate equilibrium point corresponding to the two solutions:

(yβ, lβ(−1), lβ(+1)) =
(
−1,

1
2
,
1
2

)
(yβ, lβ(−1), lβ(+1)) =

(
+1,

1
2
,
1
2

)
. (5.18)

All these quantities are illustrated graphically and compared together in Figure 5.3. As

we have done in Section 2.4, we proceed to read this figure by choosing first a point in the

microcanonical plot of lu versus u, and then try to find an equivalent point in the canonical

graph of lβ versus β. Following the theory developed in the previous chapter, if two such

points exist for which (yu, lu) = (yβ, lβ), then u must be such that s(u) = s∗∗(u) and β =
s′(u). This is indeed observed for all u outside the shaded regions of mean energies. Inside

those regions, however, we have macrostate nonequivalence of ensembles, since the points

(yu, lu) cannot be mapped onto corresponding points (yβ , lβ) for any β, in agreement with

the nonequivalence result of the last chapter.

One may be tempted to object that the empirical vectors lu located within the nonequiv-

alence region (shaded region) can be mapped onto “equivalent” empirical vectors lβ of the

canonical ensemble. But the relationship between lu and lβ is only an incomplete equiva-

lence of ensembles, not a true complete equivalence of ensembles taking place at the level of

the whole macrostate Mn which includes both Ln and Y . The fact is, in any case, that the

canonical ensemble cannot entirely account for the microcanonical equilibria observed in

the interval (ul, uh) because the former ensemble jumps over this interval in the manner of

a first-order phase transition: yβ jumps from the value yβ = −1 to yβ = +1 (block spin

reversal) as we positively move through the point β = 0 which makes uβ discontinuously

jumps from the value uβ = −1 to the value uβ = 1. (lβ is continuous at β = 0.) In the

microcanonical ensemble, by contrast, yu undergoes a similar change only when the mean

energy value u = 0 is crossed. It can also be noted that the canonical ensemble shows at

β = 0 not one but two equilibrium values of (y, l) corresponding to the two coexisting

equilibrium mean energies uβ=0 = −1 and uβ=0 = 1. In the jargon of the previous chap-
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Figure 5.3: Equilibrium properties of the half-block spin model. (Top left) Derivative of the micro-
canonical entropy. (Middle right) −1 and +1 components of the canonical equilibrium empirical
vector lβ . The equilibrium value of the Y component of this model is also shown on this graph.
(Bottom left) −1 and +1 components of the microcanonical equilibrium empirical vector lu to-
gether with the equilibrium value of Y . (Shaded region) Region of thermodynamic and macrostate
nonequivalence of ensembles.

ter, we thus see that the points u = −1 and u = 1 correspond to cases of partial equivalence

of ensembles for which we have E u
( Eβ as a result of the fact that Eβ=0 = E u=−1∪E u=1.

5.2. THE MEAN-FIELD BLUME-EMERY-GRIFFITHS MODEL

The second model that we study for the purpose of illustrating the equivalence or nonequiv-

alence of the microcanonical and canonical ensembles is a spin model originally devised by

Blume, Emery and Griffiths (BEG) as a phenomenological mean-field model of the super-
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fluid phases of liquid helium [Blume et al. (1971)]. The thermodynamic nonequivalence of

the microcanonical and canonical ensembles for this model was proved by Barré, Mukamel

and Ruffo (2001) who showed, via Landau expansion techniques, that the BEG microca-

nonical entropy has nonconcave anomalies for certain values of parameters defining this

model. Our aim here, as it was in the previous section, is to show how the nonequivalence

of the microcanonical and canonical ensembles for this model entails a more fundamental

statistical nonequivalence of these two ensembles.

Definition of the Model

The model that we consider is not the actual original BEG model, but a variant of this model

defined by the following Hamiltonian:

U(xn) =
n∑
i=1

x2
i −K

(
n∑
i=1

xi

)2

(5.19)

[see Barré et al. (2001) and Dauxois et al. (2002)]. In this formula, xi represents a spin vari-

able at site i taking values in the set X = {−1, 0,+1}, andK is a positive real constant. As

in the case of the noninteracting spin model, the macroscopic variable that we use to inves-

tigate the equivalence and nonequivalence of the microcanonical and canonical ensembles

is the empirical vector

Ln = (Ln(−1), Ln(0), Ln(+1)), (5.20)

whose three components Ln(−1), Ln(0), and Ln(−1) give the proportion of spins in the

microstate xn that take the respective values −1, 0, and +1. The energy representation

function associated with the mean energy

u(xn) =
U(xn)
n

=
1
n

n∑
i=1

x2
i −K

(
1
n

n∑
i=1

xi

)2

(5.21)

is trivially found to be

u(Ln = l) =
∑
x∈X

x2l(x)−K

(∑
x∈X

xl(x)

)2

= l(+1) + l(−1)−K[l(+1)− l(−1)]2 (5.22)
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while the large deviation entropy function s(l) associated with the probability measure

P (Ln ∈ dl) is given by

s(l) = −
∑
x∈X

l(x) ln l(x)− ln 3 (5.23)

under the assumption that P (xn) = 3−n for every xn ∈X n (equiprobability hypothesis).

As before, these properties of Ln allow us to characterize the equilibrium macrostates

with respect to the microcanonical and canonical ensembles as solutions of an appropriate

optimization problem. In the case of the microcanonical ensemble, the set E u = {lu} of

equilibrium empirical vectors lu associated with the mean energy u are calculated in the

thermodynamic limit by maximizing s(l) over the macrostate space L subject to the con-

straint u(lu) = u. Solving this problem necessitates only the maximization of a function of

one variable, since the normalization constraint on the components of the empirical vector

reduces the number of independent components of lu to two, while the microcanonical en-

ergy constraint reduces this number by one more. On the other hand, the set Eβ = {lβ}
of canonical equilibrium empirical vectors lβ parameterized by the inverse temperature β

is found by maximizing the quantity βu(l) − s(l) over L . In this case, we are faced with

an unconstrained two-dimensional maximization problem involving the two components

l(−1) and l(+1).

Another method for constructing Eβ can be based on the determination of the canonical

equilibrium value of the total spin per particle or magnetization macrostate. It is presented

in the Supplementary Material section found at the end of this chapter. The advantage of

this alternate method is that the associated minimization problem is one-dimensional rather

than two-dimensional.

Equivalence of Ensembles forK = 1.1111

In Figure 5.4 we present a first set of solutions for E u and Eβ corresponding to the value

K = 1.1111, together with a plot of the derivative of the microcanonical entropy func-

tion s(u). Because neither of the two optimization problems involved in the definitions of

E u and Eβ could be solved analytically, we provide from this point on numerical results

obtained using various routines available in the scientific software Mathematica (see Notes

and Remarks Section for the details of the numerical calculations). The top left plot of

Figure 5.4 showing s′(u) was obtained by calculating an empirical vector lu ∈ E u, which

satisfies u(lu) = u and s(lu) = s(u). The top right and the bottom left plots display,

respectively, the canonical and microcanonical equilibrium components of the empirical
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Figure 5.4: Full equivalence of ensembles for the BEG model withK = 1.1111. (Top left) Derivative
of the microcanonical entropy s(u). (Top right) The components l(+1) and l(−1) of the equilib-
rium empirical measure lβ in the canonical ensemble as functions of β. For β > βc the solid and
dashed curves can be taken to represent l(+1) and l(−1), respectively, and vice versa. (Bottom left)
The components l(+1) and l(−1) of the equilibrium empirical measure lu in the microcanonical
ensemble as functions of u. For u < uc the solid and dashed curves can be taken to represent l(+1)
and l(−1), respectively, and vice versa.
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vector as a function of the parameters β and u defining each of the two ensembles. In

the top right plot, the solid curve can be taken to represent the spin +1 component of

the equilibrium empirical vector lβ , while the dashed curve can be taken to represent the

spin −1 component of the same equilibrium empirical vector. Since the BEG Hamilto-

nian satisfies the exchange symmetry l(+1) ↔ l(−1), the roles of the solid and dashed

curves can also be reversed. For β ≤ βc, the solid curve represents the common value of

l(+1) = l(−1). In all cases, the component l(0) of lβ is determined by the normalization

condition l(0) = 1− l(+1)− l(−1). The same explanation applies to the bottom left plot

of lu.

The first series of plots displayed in Figure 5.4 were designed to illustrate a case where

s(u) is concave and where, accordingly, we expect equivalence of ensembles. That the equiv-

alence of ensembles holds in this case at the level of the empirical vector can be seen by

noting that the solid and dashed curves representing the l(+1) and l(−1) components of

lβ in the top right plot can be put in one-to-one correspondence with the solid and dashed

curves representing the same two components of lu in the bottom left plot. The one-to-one

correspondence, as we now know, is defined by the derivative of the microcanonical entropy

s(u): for a given u we have lu = lβ(u) with β(u) = s′(u). Moreover, since the monotonic

function s′(u) can be inverted to yield a function u(β) satisfying s′(u(β)) = β, we have

lβ = lu(β) for all β. Thus, the equilibrium statistics of the BEG model in the microcanoni-

cal ensemble can be translated unambiguously into equivalent equilibrium statistics in the

canonical ensemble and vice versa. In this case, the critical mean energy uc at which the

BEG model goes from a high-energy phase of zero magnetization

m(l) = l(+1)− l(−1) (5.24)

to a low-energy phase of nonzero magnetization in the microcanonical ensemble can be

calculated from the viewpoint of the canonical ensemble by finding the critical inverse tem-

perature βc that determines the onset of the same phase transition in the canonical ensem-

ble. Since the two ensembles are equivalent, both the microcanonical and canonical phase

transitions must be of the same order, which in this case is second-order.

Nonequivalence of Ensembles forK = 1.0817

In the second series of plots in Figure 5.5, a case of ensemble nonequivalence corresponding

to the value K = 1.0817 is shown. Since in the top left plot s′(u) is not monotonic, s(u) is

not concave. As in many of the figures presented in the previous chapters, the open interval
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Figure 5.5: Equivalence and nonequivalence regions for the BEG model with K = 1.0817. The
solid and dashed curves are interpreted as in Figure 5.4. The shaded area in the bottom left plot
corresponds to the region of nonequivalence of ensembles delimited by the open interval (ul, uh).
The ranges of the inverse temperature and the mean energy used to draw the plots were chosen so as
to obtain a good view of the phase transitions.

(ul, uh) of mean energy values is the interval on which s(u) 6= s∗∗(u); on this interval s(u)
is nonconcave and s∗∗(u) is affine with slope βc. By comparing the top right plot of lβ and

the bottom left plot of lu, we see that the elements of E u cease to be related to elements of

Eβ for all mean energy values u in the interval (ul, uh). In fact, for any u in this interval

of thermodynamic nonequivalence of ensembles (shaded region) no lβ exists that can be

put in correspondence with an equivalent equilibrium empirical vector contained in E u.

This lack of correspondence agrees with the rigorous results reviewed in Section 4.3. Thus,
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although the equilibrium macrostates lu corresponding to u ∈ (ul, uh) are characterized

by a well defined value of the mean energy, it is impossible to assign a temperature to those

macrostates from the viewpoint of the canonical ensemble. In other words, the canonical

ensemble is blind to all mean energy values u contained in the domain of nonconcavity of

s(u). By decreasing β continuously through the critical value βc, the equilibrium value of

the energy per particle associated with the empirical vectors in Eβ jumps discontinuously

from ul to uh (canonical first-order phase transition). However, outside the range (ul, uh)
we have equivalence of ensembles, and a continuous variation of β induces a continuous

variation of u.

We can go further in our analysis of the plots of Figure 5.5 by noting that the phase

transition exhibited in the microcanonical ensemble is second-order (continuous) whereas

it is first-order (discontinuous) in the canonical ensemble. This provides another clear evi-

dence of the nonequivalence of the two ensembles. Again, because the canonical ensemble

is blind to all mean energy values located in the nonequivalence region, only a microcano-

nical analysis of the model can yield the critical mean energy uc. As for the critical inverse

temperature βc, which signals the onset of the first-order transition in the canonical ensem-

ble, its precise value can be found by calculating the slope of the affine part of s∗∗(u) or,

equivalently, by identifying the point of non-differentiability of ϕ(β). It may also be found

using Maxwell’s equal-area construction.

Further Results forK = 1.0805

To conclude this section, we present in Figure 5.6 a final series of plots of s′(u), lβ , and

lu corresponding to K = 1.0805, a slightly smaller value than the one considered in Fig-

ure 5.5. As in Figure 5.5, there also exists in Figure 5.6 an open interval (ul, uh) over which

s(u) is nonconcave. For u ∈ (ul, uh) we consequently have nonequivalence of ensembles,

illustrated by the shaded region in the bottom left plot. As in Figure 5.5, the nonequivalence

of ensembles is associated with a first-order phase transition in the canonical ensemble de-

termined by βc. The microcanonical phase transition seen in Figure 5.6 is also first-order

due to the jump in s′(u) as u increases through the critical value uc. By contrast, the micro-

canonical transition is second-order in Figure 5.5.
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Figure 5.6: Equivalence and nonequivalence regions for the BEG model with K = 1.0805. The
solid and dashed curves are interpreted as in Figure 5.4. The shaded area in the bottom left plot
corresponds to the region of nonequivalence of ensembles delimited by the open interval (ul, uh).

SUPPLEMENTARY MATERIAL: EQUILIBRIUM EMPIRICAL VECTORS OF THE BEG

MODEL

We show in this section that, given a value of β, the canonical equilibrium magnetization

valuemβ of the BEG model can be used to infer the canonical equilibrium empirical vector

Lβ . To prove this result, we start with Gibbs’ canonical probability measure for the BEG

model:

Pβ(xn) =
1

Zn(β)
exp

−β
 n∑
i=1

x2
i −

K

n

(
n∑
i=1

xi

)2
P (xn). (5.25)
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In this expression, Zn(β) is the n-particle partition function, and P (xn) = 3−n is the

uniform probability measure on X n = {−1, 0, 1}n. By absorbing the sum of the x2
i terms

in the a priori measure P , we can re-write the Gibbs measure as

Pβ(xn) =
1
C

exp

βK
n

(
n∑
i=1

xi

)2
 P̄β(xn), (5.26)

having defined

P̄β(xn) =
n∏
i=1

pβ(xi) =
n∏
i=1

e−βx
2
i

Z̄(β)
, (5.27)

and

Z̄(β) =
∑
xi∈X

e−βx
2
i = 2e−β + 1. (5.28)

The letter C above stands for the constant normalizing Pβ .

At this point, we extend the new expression (5.26) for Pβ to the space of the empirical

vector so as to obtain

Pβ(L(xn) ∈ dl) =
1
C

exp

nβK (∑
x∈X

xl(x)

)2
 P̄β(L(xn) ∈ dl). (5.29)

Also, since P̄β(xn) is given by the product measure (5.27) on X n, we can appeal to Sanov’s

Theorem to write

Pβ(L(xn) ∈ dl) � e−nD(l||pβ), (5.30)

where

D(l||pβ) =
∑
x∈X

l(x) ln
l(x)
pβ(x)

(5.31)

is the relative entropy (Kullback-Leibler distance) between l(x) and pβ(x). Sanov’s Theorem

thus implies the following large deviation estimate

Pβ(L(xn) ∈ dl) � exp

−n
D(l||pβ)− βK

(∑
x∈X

xl(x)

)2

+ c

 (5.32)

for Pβ(L(xn) ∈ dl). Here, c is another constant (the free energy basically).

This last equation constitutes half of our proof: it shows that the value canonical equi-
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librium empirical vector Lβ can be computed as

lβ = arg inf
l

D(l||pβ)− βK

(∑
x∈X

xl(x)

)2
 . (5.33)

The other half proceeds by defining the quantity

m(l) =
∑
x∈X

xl(x) = l(+1)− l(−1)

as the magnetization of the system associated with a given value L = l of the empirical

vector, and in re-expressing the optimization problem above as follows:

lβ = arg inf
m∈[−1,+1]

inf
l:m(l)=m

[
D(l||pβ)− βKm2

]
= arg inf

m∈[−1,+1]

[
inf

l:m(l)=m
D(l||pβ)− βKm2

]
. (5.34)

The constrained infimum in the square bracket is easy to solve; it has for solution

lβ,m(x) =
pβ(x)et(m)

Wβ(t(m))
, (5.35)

where

Wβ(t(m)) =
∑
x∈X

pβ(x)et(m)x. (5.36)

In this equation, t(m) is the Lagrange multiplier associated with the constraint m(lβ,m) =
m; its actual value as a function of m is determined by solving the differential equation

∂

∂t
lnWβ(t) = m. (5.37)

The second infimum over the values of the magnetization can be solved by expanding

D(lβ,m||pβ) in (5.34), and by taking the derivative of the resulting expression. The net

result obtained by following these steps is that the value ofm where the infimum if achieved

is given, for the specific case of the BEG model, by solving the equation

t(m) = 2βKm. (5.38)

It can be shown without too much difficulty that the very same equation also determines
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the equilibrium value of the magnetization with respect to the canonical probability distri-

bution Pβ . Thus, we have shown that if one is able to compute the canonical equilibrium

value of the magnetization (a one-dimensional optimization problem), then one is able to

obtain an expression for lβ using equations (5.35) and (5.37).

NOTES AND REMARKS

Sources and Credits

The simple half-block spin model was imagined by the author at a physics conference held

at the Santa Fe Institute (Santa Fe, New Mexico) during the week of April 11, 2002. The

properties of this model are reported here for the first time.

The numerical results pertaining to the BEG model were also obtained by the author

who used for the values of K the same values used by Barré et al. (2001). A paper written

by the author in collaboration with Richard S. Ellis and Bruce Turkington which reports

on these results was submitted recently for publication, as was already noted in the Intro-

duction [see Ellis et al. (2003)]. The division of the work which led to the writing of this

paper is as follows: the author imagined the problem and obtain all the numerics, while El-

lis and Turkington provided much comments and useful hints as to how these results could

be obtained, and how they relate to some of their rigorous results published in Ellis et al.

(2000). Ellis suggested, in particular, the method for reducing the 2-D optimization prob-

lem needed to find the canonical equilibrium empirical vectors of the BEG model down

to a 1-D optimization problem involving the magnetization variable (see Supplementary

Material).

Numerical Analysis of the BEG model: Technical Notes

The mathematical software Mathematica 4.2 (trademark of Wolfram Research) was used

in our study of the BEG model to numerically solve the optimization problems defining

the microcanonical and canonical sets of equilibrium empirical vectors. All the calcula-

tions leading to the graphics presented in Figures 5.4-5.6 were performed in single precision

numerical format (16 digits-precision), and were based on two numerical routines of Math-

ematica: FindMinimum and NMinimize . The details of the use of these routines is presented

in the next points.

• Figure 5.4; K = 1.1111.

– Microcanonical ensemble: Recall from Section 5.2 that the microcanonical equi-
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librium values lu(+1) and lu(−1) are found by maximizing a simple function of

one variable which results from inserting the microcanonical energy constraint

u(l) = u and the normalization constraint on l in the expression of the entropy

function s(l). To numerically locate the maximum (or maxima) of this 1-D

function as a function of u, we simply used the symbolic routine FindMinimum .

The syntax of this routine is

FindMinimum [−f(x), {x, x0, xmin, xmax}],

where f(x) is the function to maximize, x is the variable of maximization, and

x0 ∈ [xmin, xmax] is the starting point used by numerical routine to locate the

maximum of f(x). The points xmin and xmax determine of course the range of

values within which the maximum is to be located. In our case, xmin = 0 and

xmax = 1.

– Stability and verification of the results: The microcanonical maximization prob-

lem for this value ofK is numerically well-conditioned. The 1-D function to be

maximized is smooth and presents only one maxima which splits continuously

into two maxima at uc (second-order phase transition). The numerical value

of uc that we have determined from our calculations matches, with the numer-

ical precision stated (16 digits-precision), the exact critical value found from

the Landau analysis of the BEG model [see Barré, Mukamel and Ruffo (2001)].

Furthermore, the author checked graphically that the positions of the maxima

returned by the routine FindMinimum were indeed global maxima.

– Canonical ensemble: In this ensemble, we determined the values of lβ(+1) and

lβ(−1) by minimizing the two-dimensional function βu(l)− s(l) (the normal-

ization constraint on l is assumed). The numerical routine that we used to solve

this problem is the numerical equivalent of FindMinimum called NMinimize

and whose syntax is

NMinimize [{g(x, y), x > 0 ∧ y > 0 ∧ x+ y < 1}, {x, y}].

The advantage of using NMinimize over FindMinimum is only the speed at

which the solutions are found: NMinimize is usually faster than FindMinimum

because the former routine handles only numbers, whereas the latter tries to

keep its input variables in symbolic form.



130 Illustrative Physical Examples

– Stability of the results: The minimization of βu(l)−s(l) is straightforward. This

function is smooth, and the numerical estimate of βc resulting from our calcula-

tions could be checked against the exact value of the critical inverse temperature

determined by a Landau analysis of the model.

• Figure 5.5; K = 1.0817.

– Microcanonical ensemble: Same as for K = 1.1111.

– Canonical ensemble: For this value of K, we were careful to locate all the local

minima of the quantity βu(l) − s(l) for a given β using the method described

for the previous value of K. To verify our results, we also used the routine

FindMinimum with the syntax

FindMinimum [f(x, y), {x, x0, xmin, xmax}, {y, y0, ymax, ymin}].

Then we compared the various minima to determine which of them were global

minima and which of them were local minima. The global minima were used as

the values of lβ . Repeating this process for many values of β, we could numeri-

cally evaluate βc.

– Stability and verification of the results: We confirmed the validity of the results

obtained with FindMinimum and NMinimize by calculating some points lβ us-

ing the 1-D technique described in the previous section. The value of the critical

inverse temperature for the canonical first-order phase transition was also con-

firmed with another numerical method based on the determination of the value

βc for which the two symmetric minima a 6= 0 of the quantity

ϕ(β, a) = βKa2 − ln[1 + e−β(e2Kβa + e−2Kβa)] (5.39)

becomes global minima [see Barré, Mukamel and Ruffo (2001)].

• Figure 5.6; K = 1.0805.

– Microcanonical ensemble: The 1-D function to maximize for this value of K

presents many local maxima whose heights cross at some value uc (first-order

phase transitions). In order to locate the true global maximum (or maxima)

of this function, we have used the numerical routine NMinimize with the op-

tion RandomSearch to force the localization of all local maxima of the func-
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tion received as input. With this option, the local maxima found are compared

together to determine the global one(s). The syntax of NMinimize with this

option is

NMinimize [{f(x), x > 0 ∧ x < 1}, {x}, Method → �RandomSearch� ]

– Stability and verification of the results: The validity of the microcanonical re-

sults obtained for this value of K was directly verified by visualizing the shape

(and behavior as a function of u) of the 1-D macrostate entropy function that

has to be maximized in the microcanonical ensemble.

– Canonical ensemble: Same as for K = 1.0817.
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Outlook and Open Problems

MAIN CONCLUSIONS

A complete technical summary of this thesis can be obtained by pasting together the sum-

maries presented at the end of each chapter. Here we only recapitulate, in non-technical

words, the most important results and conclusions in the order in which they were pre-

sented.

• The equilibrium properties of a many-body system calculated for fixed values of its

internal energy may differ from its properties calculated in the situation where the

system is in contact with a heat bath having a fixed temperature.

• At the theoretical level, this incompatibility between the energy-dependent and the

temperature-dependent properties of a system is signalled by an incompatibility be-

tween the predictions of the microcanonical ensemble (constant energy ensemble)

and the canonical ensemble (constant temperature ensemble).

• A first thermodynamic level of nonequivalence of the microcanonical and canonical

ensembles takes place whenever the microcanonical entropy function, the basic ther-

modynamic function of the microcanonical ensemble, has nonconcave parts. In such

a case, the Legendre-Fenchel structure relating the thermodynamic functions of the

microcanonical ensemble to those of the canonical ensemble, and vice versa, is broken

because the Legendre-Fenchel transform of nonconcave functions is non-invertible.

• More precisely, in case of thermodynamic nonequivalence of ensembles, the micro-

canonical entropy cannot be expressed as the Legendre-Fenchel transform of the free

energy. What is obtained by taking this transform is the concave hull of the microca-

nonical entropy, i.e., the minimal concave envelope of the entropy function.

• The free energy can always be expressed as the Legendre-Fenchel transform of the

microcanonical entropy function even if the latter function is nonconcave, i.e., even

if there is thermodynamic nonequivalence of ensembles. This point and the previous

one imply that the canonical ensemble properties of a system can always be derived

from the microcanonical, although the contrary is not always true.
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• The microcanonical and canonical ensembles are thermodynamically nonequivalent

whenever the heat capacity, calculated microcanonically as a function of the mean

energy, is negative. (This constitutes only a sufficient criterion, not a necessary one.)

• The thermodynamic level of nonequivalence of ensembles is but the zeroth level of

nonequivalence; a more fundamental way to test whether the microcanonical and

canonical ensemble are equivalent or nonequivalent is to compare the equilibrium

values of macrostates calculated from the point of view of each ensemble (macrostate

equivalence or nonequivalence of ensembles).

• The concavity properties of the microcanonical entropy (thermodynamic level) de-

termines the relationships between the microcanonical and the canonical sets of equi-

librium macrostates (macrostate level).

• Namely, if the entropy is strictly concave (case of thermodynamic equivalence), the

two ensembles are also equivalent at the macrostate level (macrostate equivalence),

in the sense that the microcanonical set of equilibrium macrostates can be put into a

one-to-one correspondence with the canonical set of equilibrium macrostates.

• If the entropy is concave but not strictly, then the microcanonical set of equilibrium

macrostates is but a strict subset of the set of canonical equilibrium macrostates.

• If the entropy is nonconcave (thermodynamic nonequivalence), then there exists mi-

crocanonical equilibrium macrostates which are nowhere realized in the canonical

ensemble for all values of the temperature (macrostate nonequivalence).

• The fact that the microcanonical and canonical ensembles may be nonequivalent (ei-

ther at the thermodynamic or at the macrostate level) has for consequence that not

all mean energy values are realized in the canonical ensemble as equilibrium values

of the mean energy. Thus, in case of nonequivalence of ensembles, the canonical

ensemble skips over the microcanonical ensemble in the manner of a discontinuous

(first-order) phase transition.

• The macrostate values realized at equilibrium in the microcanonical ensemble but

not in the canonical ensemble (nonequivalent macrostates) correspond to critical

nonequilibrium macrostate values of the canonical ensemble.
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OPEN PROBLEMS

The present thesis hardly empties the subject of nonequivalent statistical mechanical en-

sembles. Many more problems could have been discussed in these pages, but due to space

and time limitations, a number of them had to be put aside. By way of final conclusion, we

provide below a partial list of such problems together with some clues, hints and references

which may prove useful to solve them.

Conjecture About Metastable Nonequivalent Macrostates

Prove the conjecture stated in Section 4.5 about the equilibrium microcanonical nonequiv-

alent macrostates realized as critical nonequilibrium points of the canonical ensemble. Try

also to put in evidence, either experimentally or computationally, the existence of these

states; see, e.g., Latora and Rapisarda (2001) and Latora et al (2001, 2002). See also the last

problem of this section.

Other Physical Models with Nonequivalent Microcanonical and Canonical Ensembles

Revisit the numerous models which have been discovered in the past years to have noncon-

cave entropies to provide further illustrations of the phenomenon of macrostate nonequiv-

alence of ensembles and its relation with the thermodynamic level of nonequivalent of en-

sembles; see, e.g., Thirring (1970), Kiessling and Lebowitz (1997) and Dauxois et al. (2000).

The design of new physical models having nonconcave anomalies in their microcanoni-

cal entropy function is also a quest worth pursuing. Models with entropy functions having

affine parts, for instance, are not known to the author. Perhaps a good start for finding

new physical models is to look at examples of sums of random variables which are already

known to be characterized by nonconvex rate functions [see, e.g., Dinwoodie and Zabell

(1992), Dinwoodie (1993) and Ellis (1995)].

Types of Interactions Leading to Nonequivalent Ensembles

The presence of long-range and mean-field (infinite range) interactions in statistical me-

chanical models seems to be a causa sin qua non for the appearance of nonequivalent micro-

canonical and canonical equilibrium properties; yet, no rigorous proof of this observation

is known to exist at this time. (This issue is not without relationship with the other issue

of determining which types of interactions are responsible for the appearance of first-order

phase transitions in the canonical ensemble; see Section 4.2.) What is known is that the
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equivalence of the microcanonical and canonical ensemble holds rigorously for noninter-

acting systems because, for these systems, the optimization problems involved in the deter-

mination of the microcanonical and canonical equilibrium values of the empirical vector L

(the most basic quantity to look at for noninteracting systems) is linear in L and involves an

everywhere concave macrostate entropy function s(L). According to the theory of convex

functions, these two properties of L are necessary to guarantee that the microcanonical en-

tropy, obtained by contracting the macrostate entropy s(L), is everywhere concave. In view

of this result, a question that seems to be of interest is: can this kind of argument based on

convex analysis be generalized to other types of interactions?

A Limitation of the Theory of Macrostate Nonequivalence of Ensembles

The existence of an energy representation function u(m) expressing the mean energy of

a system as a function of some macrostate m of that system is a strong prerequisite, and,

by consequence, a strong limitation of the theory presented in Chapter 4 about macrostate

nonequivalence of ensembles. The existence of u(m) poses no real problem for mean-field

systems, but for systems having short-range interactions, such as the nearest-neighbor Ising

model, it is not at all clear how u(m) can be constructed, if it can be constructed at all.

Perhaps there is a way to weaken the existence assumption of u(m), or even get rid of it,

and still be able to obtain useful results about macrostate equivalence or nonequivalence of

ensembles. Work is ongoing on this question.

A Yang-Lee Theory of Nonequivalent Ensembles

Connect the Yang-Lee Theory of first-order phase transitions [Yang and Lee (1952), Lee and

Yang (1952)] with the theory of nonequivalent microcanonical and canonical ensembles

presented in this thesis. Further references on the Yang-Lee Theory can be found in Fisher

(1965), Thompson (1972) and Salinas (2001).

Non-Thermodynamic Analogs of Nonequivalent Ensembles

The existence of nonconcave entropies is not a priori a problem of physics, but a problem

of mathematics which emerge, as we have seen in this thesis, in connection with the the-

ory of large deviations. From this extended perspective, it is to be expected that nonconvex

entropies and non-differentiable free energies should arise in fields of physical investigation

other than equilibrium statistical mechanics which make use of large deviation concepts.
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Examples of such fields include the theory of dynamical systems and the theory of multi-

fractal measures [see, e.g., Lopes (1990), Beck and Schlögl (1993), Veneziano (2002) and

Zohar (1999)]. Finding nonconcave entropies in the context of these theories would mean

that a non-thermodynamic analog of nonequivalent ensembles has been found.

Nonequilibrium Behavior of Nonequivalent Macrostates

The conjectured relationship between nonequivalent microcanonical macrostates and un-

stable or metastable macrostates of the canonical ensemble brings about many interesting

questions about the nonequilibrium or dynamical behavior of these macrostates. Being un-

stable or metastable from the point of view of the canonical ensemble, such nonequivalent

macrostates must, in effect, evolve towards more stable (canonical-equilibrium) macrostates

as soon as the microcanonical energy constraint ceases to be enforced, i.e., as soon as the sys-

tem initially assuming one of the nonequivalent macrostate values is put in contact with a

heat reservoir. But how exactly is the system evolving towards canonical equilibrium? How

much time does it take for the system to reach the new canonical-equilibrium state starting

from its unstable or metastable state? At which “speed” does it evolve to equilibrium? What

is the rate of decay? Also, how is the system going from a metastable state to a stable state?

That is, what is the physical process taking the system from one state to another? Is the

process instantaneous? Can the process be stopped or “frozen” in any way?

To answer these questions, the reader is referred to the abundant literature that already

exists on the subject of metastable states and their appearance in first-order phase transi-

tions; see, e.g., Griffiths et al. (1966), Langer (1967, 1969), Penrose and Lebowitz (1971),

Binder (1973), Gilmore (1979), Agarwal and Shenoy (1981), and Gunton and Droz (1983).

Before attempting to read these papers, the textbooks of Balescu (1975, 1997) and Zwanzig

(2001) may also be read with profit to gain a basic knowledge of nonequilibrium statistical

mechanics.
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thermodynamic representation, 59, 67

Gartner-Ellis Theorem, 31, 32, 45
Generating function, 32
Gibbs measure, 56

Hamiltonian, 50
Heat capacity, 82, 85

Isolated system, 52
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Joint state, 50

Kullback-Leibler distance, 28

Laplace’s Method, 33
Large deviation(s), 43

principle, 28, 44
rate exponent, 28
rate function, 29

latent heat, 81
Law of Large Numbers, 42
Legendre transform, 40
Legendre-Fenchel transform, 32, 45

inversion, 84

Macrostate, 50
canonical, 58, 107
microcanonical, 55

Magnetization, 122, 127
Maximum entropy principle, 69
Maxwell’s construction, 86
Mean energy, 50

canonical, 59, 67
metastable, 96, 106
stable, 93
unstable, 96, 106

Microcanonical
ensemble, 52, 53, 66
entropy, 55
equilibrium macrostates, 55, 66
nonequivalent macrostates, 106
probability, 66
rate function, 66

Microstate, 50
Minimum free energy principle, 69

Nonconcave function, 79
Nonconvex function, 75

Open system, 52

Partition function, 32, 45, 56, 67
Phase transition, 80

canonical first-order, 80, 95, 108

degenerate, 95
microcanonical, 124

Probability
canonical, 67
Gibbs, 56, 67
joint, 50
microcanonical, 66
uniform, 50, 65

Random variable, 11
binary, 23, 35
discrete, 27
Gaussian, 25
Normal, 25
outcome, 23
quasi-continuous, 30
state space, 11

Rate exponent, 28
Rate function, 29

canonical, 67
macrostate, 66
microcanonical, 66

Saddlepoint approximation, 46
Sanov’s Theorem, 27, 38, 61
Small deviation, 43
Spin, 60

BEG model, 119
block, 113
half-block model, 114

Stirling’s approximation, 24
Strict concavity, 79

Thermodynamic
behavior, 50
function, 51
limit, 51

Typical
sequence, 24
value, 41

Variance, 25
Volume, 50

146


